Skip to main content
Log in

Co-doping effects on magnetism and superconductivity in the 112-type EuFeAs2 system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The discovery of EuFeAs2, currently the only charge-neutral parent phase of the 112-type iron-pnictide system, provides a new platform for the study of elemental doping effects on magnetism and superconductivity (SC). In this study, a series of polycrystalline EuFe1−yCoyAs2 and Eu0.9Pr0.1Fe1−yCoyAs2 samples are synthesized through solid-state reaction, and the evolutions of SC and magnetism with Co doping in EuFeAs2 and Eu0.9Pr0.1FeAs2 are investigated by electrical transport and magnetic susceptibility measurements. For EuFe1−yCoyAs2, the Eu-related antiferromagnetic (AFM) transition around 40 K is barely affected by Co doping, while the Fe-related spin density wave (SDW) transition temperature drops rapidly. Meanwhile, SC is induced by a trace amount of Co doping, with a highest transition temperature Tc∼28 K found in EuFe0.9Co0.1As2. For the Eu0.9Pr0.1Fe1−yCoyAs2 series, the magnetism and superconductivity show similar evolutions upon Co doping, and the highest Tc is enhanced to 30.6 K with an optimum doping level y ∼ 0.07. Our results shed light on the competition between SC and SDW with Co doping in the 112-type EuFeAs2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, E. Demler, and S. Sachdev, Phys. Rev. B 66, 094501 (2002), arXiv: cond-mat/0112343.

    Article  ADS  Google Scholar 

  2. R. M. Fernandes, D. K. Pratt, W. Tian, J. Zarestky, A. Kreyssig, S. Nandi, M. G. Kim, A. Thaler, N. Ni, P. C. Canfield, R. J. McQueeney, J. Schmalian, and A. I. Goldman, Phys. Rev. B 81, 140501 (2010), arXiv: 0911.5183.

    Article  ADS  Google Scholar 

  3. K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008), arXiv: 0803.1279.

    Article  ADS  Google Scholar 

  4. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. 7, 953 (2008), arXiv: 0806.2528.

    Article  ADS  Google Scholar 

  5. J. Paglione, and R. L. Greene, Nat. Phys. 6, 645 (2010), arXiv: 1006.4618.

    Article  Google Scholar 

  6. A. Martinelli, F. Bernardini, and S. Massidda, C. R. Phy. 17, 5 (2016), arXiv: 1507.02406.

    Article  ADS  Google Scholar 

  7. H. Luetkens, H. H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Nat. Mater. 8, 305 (2009), arXiv: 0806.3533.

    Article  ADS  Google Scholar 

  8. M. Hiraishi, S. Iimura, K. M. Kojima, J. Yamaura, H. Hiraka, K. Ikeda, P. Miao, Y. Ishikawa, S. Torii, M. Miyazaki, I. Yamauchi, A. Koda, K. Ishii, M. Yoshida, J. Mizuki, R. Kadono, R. Kumai, T. Kamiyama, T. Otomo, Y. Murakami, S. Matsuishi, and H. Hosono, Nat. Phys. 10, 300 (2014), arXiv: 1403.6021.

    Article  Google Scholar 

  9. J. Yang, R. Zhou, L. L. Wei, H. X. Yang, J. Q. Li, Z. X. Zhao, and G. Q. Zheng, Chin. Phys. Lett. 32, 107401 (2015), arXiv: 1507.01750.

    Article  ADS  Google Scholar 

  10. S. Iimura, H. Okanishi, S. Matsuishi, H. Hiraka, T. Honda, K. Ikeda, T. C. Hansen, T. Otomo, and H. Hosono, Proc. Natl. Acad. Sci. USA 114, E4354 (2017), arXiv: 1705.05504.

    Article  ADS  Google Scholar 

  11. H. Chen, Y. Ren, Y. Qiu, W. Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett. 85, 17006 (2009), arXiv: 0807.3950.

    Article  ADS  Google Scholar 

  12. L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B. Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phys. Rev. B 83, 094523 (2011), arXiv: 1011.2085.

    Article  ADS  Google Scholar 

  13. K. M. Taddei, J. M. Allred, D. E. Bugaris, S. H. Lapidus, M. J. Krogstad, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. Osborn, S. Rosenkranz, and O. Chmaissem, Phys. Rev. B 95, 064508 (2017).

    Article  ADS  Google Scholar 

  14. N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013), arXiv: 1311.1303.

    Article  ADS  Google Scholar 

  15. H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, and J. Shimoyama, J. Am. Chem. Soc. 136, 846 (2014).

    Article  Google Scholar 

  16. K. Kudo, Y. Kitahama, K. Fujimura, T. Mizukami, H. Ota, and M. Nohara, J. Phys. Soc. Jpn. 83, 093705 (2014), arXiv: 1408.4197.

    Article  ADS  Google Scholar 

  17. K. Kudo, T. Mizukami, Y. Kitahama, D. Mitsuoka, K. Iba, K. Fujimura, N. Nishimoto, Y. Hiraoka, and M. Nohara, J. Phys. Soc. Jpn. 83, 025001 (2014), arXiv: 1311.1269.

    Article  ADS  Google Scholar 

  18. S. Kawasaki, T. Mabuchi, S. Maeda, T. Adachi, T. Mizukami, K. Kudo, M. Nohara, and G. Zheng, Phys. Rev. B 92, 180508 (2015), arXiv: 1511.00760.

    Article  ADS  Google Scholar 

  19. S. Jiang, C. Liu, H. Cao, T. Birol, J. M. Allred, W. Tian, L. Liu, K. Cho, M. J. Krogstad, J. Ma, K. M. Taddei, M. A. Tanatar, M. Hoesch, R. Prozorov, S. Rosenkranz, Y. J. Uemura, G. Kotliar, and N. Ni, Phys. Rev. B 93, 054522 (2016), arXiv: 1505.05881.

    Article  ADS  Google Scholar 

  20. H. Yakita, H. Ogino, A. Sala, T. Okada, A. Yamamoto, K. Kishio, A. Iyo, H. Eisaki, and J. Shimoyama, Supercond. Sci. Technol. 28, 065001 (2015), arXiv: 1505.07242.

    Article  ADS  Google Scholar 

  21. H. Yakita, H. Ogino, A. Sala, T. Okada, A. Yamamoto, K. Kishio, A. Iyo, H. Eisaki, and J. Shimoyama, Physica C 518, 14 (2015), arXiv: 1505.07247.

    Article  ADS  Google Scholar 

  22. X. Xing, W. Zhou, B. Xu, N. Li, Y. Sun, Y. Zhang, and Z. Shi, J. Phys. Soc. Jpn. 84, 075001 (2015).

    Article  ADS  Google Scholar 

  23. X. Xing, Z. Li, C. Xu, W. Zhou, X. Xu, B. Chen, H. Zhao, M. Xu, and Z. Shi, J. Alloys Compd. 721, 261 (2017).

    Article  Google Scholar 

  24. T. Xie, D. Gong, W. Zhang, Y. Gu, Z. Huesges, D. Chen, Y. Liu, L. Hao, S. Meng, Z. Lu, S. Li, and H. Luo, Supercond. Sci. Technol. 30, 095002 (2017), arXiv: 1705.11144.

    Article  ADS  Google Scholar 

  25. X. Wu, C. Le, Y. Liang, S. Qin, H. Fan, and J. Hu, Phys. Rev. B 89, 205102 (2014), arXiv: 1402.4712.

    Article  ADS  Google Scholar 

  26. M. Y. Li, Z. T. Liu, W. Zhou, H. F. Yang, D. W. Shen, W. Li, J. Jiang, X. H. Niu, B. P. Xie, Y. Sun, C. C. Fan, Q. Yao, J. S. Liu, Z. X. Shi, and X. M. Xie, Phys. Rev. B 91, 045112 (2015), arXiv: 1411.5525.

    Article  ADS  Google Scholar 

  27. S. Jiang, L. Liu, M. Schütt, A. M. Hallas, B. Shen, W. Tian, E. Emmanouilidou, A. Shi, G. M. Luke, Y. J. Uemura, R. M. Fernandes, and N. Ni, Phys. Rev. B 93, 174513 (2016).

    Article  ADS  Google Scholar 

  28. J. Yu, T. Liu, B. J. Pan, B. B. Ruan, X. C. Wang, Q. G. Mu, K. Zhao, G. F. Chen, and Z. A. Ren, Sci. Bull. 62, 218 (2017), arXiv: 1611.06821.

    Article  Google Scholar 

  29. J. Yu, T. Liu, K. Zhao, B.-J. Pan, Q.-G. Mu, B.-B. Ruan, and Z.-A. Ren, Acta Phys. Sin. 67, 207403 (2018).

    Google Scholar 

  30. Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 83, 17002 (2008), arXiv: 0804.2582.

    Article  ADS  Google Scholar 

  31. Y. Sun, W. Zhou, L. J. Cui, J. C. Zhuang, Y. Ding, F. F. Yuan, J. Bai, and Z. X. Shi, AIP Adv. 3, 102120 (2013), arXiv: 1309.4179.

    Article  ADS  Google Scholar 

  32. A. J. Drew, C. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rössle, K. W. Kim, C. Baines, and C. Bernhard, Nat. Mater. 8, 310 (2009), arXiv: 0807.4876.

    Article  ADS  Google Scholar 

  33. M. Zhang, J. J. Ying, Y. J. Yan, A. F. Wang, X. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, X. G. Luo, J. Hu, and X. H. Chen, Phys. Rev. B 85, 092503 (2012), arXiv: 1201.1706.

    Article  ADS  Google Scholar 

  34. Y. B. Liu, Y. Liu, W. H. Jiao, Z. Ren, and G. H. Cao, Sci. China-Phys. Mech. Astron. 61, 127405 (2018), arXiv: 1808.05813.

    Article  ADS  Google Scholar 

  35. M. A. Albedah, Z. M. Stadnik, O. Fedoryk, Y. B. Liu, and G. H. Cao, J. Magn. Magn. Mater. 503, 166603 (2020).

    Article  Google Scholar 

  36. W. T. Jin, Y. Xiao, Z. Bukowski, Y. Su, S. Nandi, A. P. Sazonov, M. Meven, O. Zaharko, S. Demirdis, K. Nemkovski, K. Schmalzl, L. M. Tran, Z. Guguchia, E. Feng, Z. Fu, and T. Brückel, Phys. Rev. B 94, 184513 (2016), arXiv: 1612.02238.

    Article  ADS  Google Scholar 

  37. T. Yamaguchi, J. Phys. Chem. Solids 35, 479 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiAn Ren.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11774402), and the National Key Research Program of China (Grant Nos. 2018YFA0704200, and 2016YFA0300301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Liu, T., Ruan, B. et al. Co-doping effects on magnetism and superconductivity in the 112-type EuFeAs2 system. Sci. China Phys. Mech. Astron. 64, 267411 (2021). https://doi.org/10.1007/s11433-020-1685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1685-3

Keywords

Navigation