Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Mechanochemical Synthesis and Reactivity of 1,2,3-Triazole Carbohydrate Derivatives as Glycogen Phosphorylase Inhibitors

Author(s): Naoufel Ben Hamadi*

Volume 18, Issue 4, 2021

Published on: 17 December, 2020

Page: [406 - 410] Pages: 5

DOI: 10.2174/1570179417666201217142634

Price: $65

Abstract

Aims: We have developed this work to recommend an original route for the preparation of triazole derivatives.

Background: Carbohydrates containing 1,2,3-triazole derivatives have various biological activities. Due to their advantageous and biological property, they are eye-catching synthetic targets in the arsenal of organic chemistry. Thus, finding green and efficient methods, as well as using the ball milling procedure for the synthesis of these heterocycles, is of interest to organic chemistry researchers.

Objective: The objective of this study was to synthesize carbohydrate-derived triazoles under high-speed vibration milling conditions and investigate their properties.

Materials and Methods: A mixture of glycoside azide derivatives (1 mmol) and prop-2-yn-1-ol (1.5 mmol) in the presence of copper (I) was vigorously shaken under vibration milling conditions at 650 rpm with three balls for 15 min. The deprotection of the resulting triazole derivatives was affected by treatment with 4M hydrochloric acid in methanol under reflux.

Results and Discussion: A short and convenient route to synthesize carbohydrate-derived triazoles, based on a ball-mill via 1,3-dipolar cycloaddition reactions to prop-2-yn-1-ol, was developed. Cleavage of the isopropylidene protecting group provided water-soluble triazoles, evaluated as glycogen phosphorylase inhibitors. 1-[6- (4-Hydroxymethyl-[1,2,3]triazol-1-yl)-2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxol-4-yl]-ethane-1,2-diol was the best inhibitor of rabbit muscle glycogen phosphorylase b (IC50 = 60 μM).

Conclusion: In summary, we developed new, short and convenient routes to glucose-derived 1,2,3-triazole based on 1,3-dipolar cycloaddition reactions flowed by ball milling. The use of isopropylidene protective groups gave access to the analogous deprotected water-soluble motifs, analogous to known inhibitors of glycogen phosphorylase.

Keywords: Ball milling, click chemistry, solvent-free, triazole, carbohydrate, phosphorylase inhibitors.

[1]
Johnson, L.; FASEB, J. Glycogen phosphorylase: Control by phosphorylation and allosteric effectors 1992, 6(6), 2274-2282.
[2]
Kurukulasuriya, R.; Link, J.T.; Madar, D.J.; Pei, Z.; Richards, S.J.; Rohde, J.J.; Souers, A.J.; Szczepankiewicz, B.G. Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem., 2003, 10(2), 123-153.
[http://dx.doi.org/10.2174/0929867033368556] [PMID: 12570714]
[3]
Ross, S.A.; Gulve, E.A.; Wang, M. Chemistry and biochemistry of type 2 diabetes. Chem. Rev., 2004, 104(3), 1255-1282.
[http://dx.doi.org/10.1021/cr0204653] [PMID: 15008623]
[4]
Agius, L. New hepatic targets for glycaemic control in diabetes. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 587-605.
[http://dx.doi.org/10.1016/j.beem.2007.09.001] [PMID: 18054737]
[5]
Oikonomakos, N.G. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr. Protein Pept. Sci., 2002, 3(6), 561-586.
[http://dx.doi.org/10.2174/1389203023380422] [PMID: 12470212]
[6]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001, 414(6865), 821-827.
[http://dx.doi.org/10.1038/414821a] [PMID: 11742415]
[7]
Treadway, J.L.; Mendys, P.; Hoover, D.J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin. Investig. Drugs, 2001, 10(3), 439-454.
[http://dx.doi.org/10.1517/13543784.10.3.439] [PMID: 11227044]
[8]
Somsák, L.; Nagya, V.; Hadady, Z.; Docsa, T.; Gergely, P. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments. Curr. Pharm. Des., 2003, 9(15), 1177-1189.
[http://dx.doi.org/10.2174/1381612033454919] [PMID: 12769745]
[9]
Baker, D.J.; Greenhaff, P.L.; Timmons, J.A. Glycogen phosphorylase inhibition as a therapeutic target: a review of the recent patent literature. Expert Opin. Ther. Pat., 2006, 16(4), 459-466.
[http://dx.doi.org/10.1517/13543776.16.4.459]
[10]
Henke, B.R.; Sparks, S.M. Glycogen phosphorylase inhibitors. Mini Rev. Med. Chem., 2006, 6(8), 845-857.
[http://dx.doi.org/10.2174/138955706777934991] [PMID: 16918491]
[11]
Guan, T.; Qian, Y.; Tang, X.; Huang, M.; Huang, L.; Li, Y.; Sun, H. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycemic rats by GLT-1 up-regulation. J. Neurosci. Res., 2011, 89(11), 1829-1839.
[http://dx.doi.org/10.1002/jnr.22671] [PMID: 21800347]
[12]
Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, E.; Chrysina, E.D.; Alexacou, K.M.; Hayes, J.M.; Tiraidis, C.; Lazoura, E.; Leonidas, D.D.; Zographos, S.E.; Oikonomakos, N.G. New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr. Med. Chem., 2008, 15(28), 2933-2983.
[http://dx.doi.org/10.2174/092986708786848659] [PMID: 19075645]
[13]
Loughlin, W.A. Recent advances in the allosteric inhibition of glycogen phosphorylase. Mini Rev. Med. Chem., 2010, 10(12), 1139-1155.
[http://dx.doi.org/10.2174/1389557511009011139] [PMID: 20716052]
[14]
Praly, J.P.; Vidal, S. Inhibition of glycogen phosphorylase in the context of type 2 diabetes, with focus on recent inhibitors bound at the active site. Mini Rev. Med. Chem., 2010, 10(12), 1102-1126.
[http://dx.doi.org/10.2174/1389557511009011102] [PMID: 20716051]
[15]
Somsák, L. Glucose derived inhibitors of glycogen phosphorylase. C. R. Chim., 2011, 14, 211-223.
[http://dx.doi.org/10.1016/j.crci.2010.09.004]
[16]
Chrysina, E.D.; Chajistamatiou, A.; Chegkazi, M. From structure--based to knowledge--based drug design through x-ray protein crystallography: sketching glycogen phosphorylase binding sites. Curr. Med. Chem., 2011, 18(17), 2620-2629.
[http://dx.doi.org/10.2174/092986711795933632] [PMID: 21568887]
[17]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2h)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(12), 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[18]
Foye, W. Principal di Chemico Farmaceutica; Piccin: Padova, Italy, 1991, p. 416.
[19]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[20]
Hai-Gen, L.; Liang, L.; Hui, X.; Guan-Wu, W. Mechanochemical synthesis and properties of boronic ester cage compounds. Curr. Org. Chem., 2018, 22(9), 923-929.
[http://dx.doi.org/10.2174/1385272821666171106151700]
[21]
McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology; IUPAC: Zürich, Switzerland, 1997.
[22]
Ben Hamadi, N.; Msaddek, M. Synthesis and reactivity of N-sugar-maleimides: An access to novel highly substituted enantiopure pyrazolines. Tetrahedron Asymmetry, 2012, 23(24), 1689-1693.
[http://dx.doi.org/10.1016/j.tetasy.2012.11.005]
[23]
Hajlaoui, K.; Guesmi, A.; Ben Hamadi, N.; Msaddek, M. Synthesis of novel pyrazole–sucrose derivatives by 1,3-dipolar cycloaddition. J. Heterocycl. Chem., 2018, 55(9), 2069-2074.
[http://dx.doi.org/10.1002/jhet.3246]
[24]
Al‐Duaij, O.K.; Ben Hamadi, N.; Khezami, L. Asymmetric cycloaddition: An efficient synthesis of enantiopure isoxazolines substituted with carbohydrate analogues. J. Heterocycl. Chem., 2016, 53(2), 408-413.
[http://dx.doi.org/10.1002/jhet.2423]
[25]
Hajlaoui, K.; Ben Hamadi, N.; Msaddek, M. Copper nanoparticles cycloaddition of terminal acetylenes with carbohydrate Azide. Catal. Lett., 2015, 145(6), 1246-1250.
[http://dx.doi.org/10.1007/s10562-015-1521-8]
[26]
Al-Duaij, O.K.; Guesmi, A.; Ben Hamadi, N. Copper nanoparticle mediated ‘click glycosylation’ for the synthesis of fluorinated triazole derivatives. Lett. Org. Chem., 2016, 13(5), 374-379.
[http://dx.doi.org/10.2174/1570178613666160224005638]
[27]
Guesmi, A.; Ben Hamadi, N. Copper nanoparticles catalyzed regioselective cycloaddition of terminal acetylenes to sodium azide in the presence of o-tosyl fluorocarbohydrate derivatives: A ssembly of novel enantiopure fluoromonasaccharides with 1,2,3-triazole and 4-phenyl-oxazolidin-2-ones subunits. Maced. J. Chem. Chem. Eng., 2016, 35(1), 39-44.
[http://dx.doi.org/10.20450/mjcce.2016.758]
[28]
Baygu, Y.; Yıldız, B.; Kabay, N.; Gök, Y. Novel magnesium and zinc porphyrazines containing galactose moieties: Synthesis via click reaction and characterization. Inorg. Chem. Commun., 2016, 71, 35-40.
[http://dx.doi.org/10.1016/j.inoche.2016.07.001]
[29]
Haines, A.H. Synthesis of 6,6′-ether linked disaccharides from D-allose, D-galactose, D-glucose and D-mannose: Evidence on the structure of coyolosa. Org. Biomol. Chem., 2004, 2(16), 2352-2358.
[http://dx.doi.org/10.1039/B407468H] [PMID: 15305218]
[30]
Roslund, M.U.; Klika, K.D.; Lehtilä, R.L.; Tähtinen, P.; Sillanpää, R.; Leino, R. Conformation of the galactose ring adopted in solution and in crystalline form as determined by experimental and DFT 1H NMR and single-crystal X-ray analysis. J. Org. Chem., 2004, 69(1), 18-25.
[http://dx.doi.org/10.1021/jo035400u] [PMID: 14703374]
[31]
Peter, K.; Wolfgang, S.; Siegfried, P.; Bohumil, S.; Miroslav, K. Preparation and crystal and molecular structure of 6-O-[(2S)-2,3-epoxypropyl]-1, 2:3,4-di-O-isopropylidene-α-D-galactopyranose. Pyranoid ring conformation in 1,2:3,4-di-O-isopropylidene galactopyranose and related systems. Carbohydr. Res., 1994, 265(2), 237-248.
[http://dx.doi.org/10.1016/0008-6215(94)00232-0] [PMID: 7805063]
[32]
Zemplén, G.; Pascu, E. Über die verseifung acetylierter zucker und verwandter substanzen. Dtsch Chem Ges B., 1929, 62, 1613-1614.
[http://dx.doi.org/10.1002/cber.19290620640]
[33]
Chen, M.Y.; Patkar, L.N.; Lu, K.C.; Lee, A.S.Y.; Lin, C.C. Chemoselective deprotection of acid labile primary hydroxyl protecting groups under CBr4-photoirradiation conditions. Tetrahedron, 2004, 60(50), 11465-11475.
[http://dx.doi.org/10.1016/j.tet.2004.09.095]
[34]
Bokor, E.; Docsa, T.; Gergely, P.; Somsák, L. C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase. ACS Med. Chem. Lett., 2013, 4(7), 612-615.
[http://dx.doi.org/10.1021/ml4001529] [PMID: 24900719]
[35]
Fischer, E.; Krebs, H.E.G. Muscle phosphorylase b: x Glucose-1-phosphate+Gn Gn+x + x inorganic phosphate(where Gn designates glycogen containing n glucose residues). Methods Enzymol, 1962, 5, 369-373.
[http://dx.doi.org/10.1016/S0076-6879(62)05243-X]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy