Skip to main content
Log in

Channel Blockers of Ionotropic Glutamate Receptors

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Glutamatergic transmission is responsible for most of excitatory synaptic processes in the central nervous system of vertebrates. Glutamatergic synapses are involved in the vast majority of physiological and pathological processes, and their modulation has a direct impact on almost all brain functions. It is not surprising that the development and research of drugs that can affect the glutamatergic synapses has been and remains one of the priorities of neuropharmacology. Even a brief overview of this complex problem cannot fit into a single article, so the review focuses on only one of the topics, namely, the ligands which directly block the ion pores of glutamate-activated channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R., Glutamate receptor ion channels: structure, regulation, and function, Pharmacol. Rev., 2010, vol. 62(3), pp. 405–496. https://doi.org/10.1124/pr.109.002451

  2. Hansen, K.B., Yi, F., Perszyk, R.E., Furukawa, H., Wollmuth, L.P., Gibb, A.J., and Traynelis, S.F., Structure, function, and allosteric modulation of NMDA receptors, J. Gen. Physiol., 2018, vol. 150(8), pp. 1081–1105. https://doi.org/10.1085/jgp.201812032

  3. Tikhonov, D.B. and Zhorov, B.S., The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels, Bioch. Biophys. Biomembr., 2020, vol. 1862(10), pp. 183401. https://doi.org/10.1016/j.bbamem.2020.183401

  4. Bennett, J.A. and Dingledine, R., Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop, Neuron, 1995, vol. 14(2), pp. 373–384. https://doi.org/10.1016/0896-6273(95)90293-7

  5. Hollmann, M., Maron, C., and Heinemann, S., N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1, Neuron, 1994, vol. 13(6), pp. 1331–1343. https://doi.org/10.1016/0896-6273(94)90419-7

  6. Kuner, T., Wollmuth, L.P., Karlin, A., Seeburg, P.H., and Sakmann, B., Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines, Neuron, 1996, vol. 17(2), pp. 343–352. https://doi.org/10.1016/s0896-6273(00)80165-8

  7. Laube, B., Kuhse, J., and Betz, H., Evidence for a tetrameric structure of recombinant NMDA receptors, J. Neurosci., 1998, vol. 18(8), pp. 2954–2961. https://doi.org/10.1523/JNEUROSCI.18-08-02954.1998

  8. Mano, I. and Teichberg, V.I., A tetrameric subunit stoichiometry for a glutamate receptorchannel complex, Neuroreport, 1998, vol. 9(2), pp. 327–331. https://doi.org/10.1097/00001756-199801260-00027

  9. Panchenko, V.A., Glasser, C.R., and Mayer, M.L., Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis, J. Gen. Physiol., 2001, vol. 117(4), pp. 345–360. https://doi.org/10.1085/jgp.117.4.345

  10. Rosenmund, C., Stern-Bach, Y., and Stevens, C.F., The tetrameric structure of a glutamate receptor channel, Science, 1998, vol. 280(5369), pp. 1596–1599. https://doi.org/10.1126/science.280.5369.1596

  11. Wo, Z.G. and Oswald, R.E., Unraveling the modular design of glutamate-gated ion channels, Trends. Neurosci., 1995, vol. 18(4), pp. 161–168. https://doi.org/10.1016/0166-2236(95)93895-5

  12. Zhorov, B.S. and Tikhonov, D.B., Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action, J. Neurochem., 2004, vol. 88(4), pp. 782–799. https://doi.org/10.1111/j.1471-4159.2004.02261.x

  13. Doyle, D.A., Morais Cabral, J., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R., The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 1998, vol. 280(5360), pp. 69–77. https://doi.org/10.1126/science.280.5360.69

  14. Tikhonov, D.B., Mellor, J.R., Usherwood, P.N., and Magazanik, L.G., Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers, Biophys. J., 2002, vol. 82(4), pp. 1884–1893. https://doi.org/10.1016/S0006-3495(02)75538-0

  15. Tikhonov, D.B., Ion channels of glutamate receptors: structural modeling, Mol. Membr. Biol., 2007, vol. 24(2), pp. 135–147. https://doi.org/10.1080/09687860601008806

  16. Kaczor, A.A., Kijkowska-Murak, U.A., Kronbach, C., Unverferth, K., and Matosiuk, D., Modeling of glutamate GluR6 receptor and its interactions with novel noncompetitive antagonists, J. Chem. Informat. Modeling, 2009, vol. 49(4), pp. 1094–1104. https://doi.org/10.1021/ci900033m

  17. Kaczor, A.A., Kijkowska-Murak, U.A., and Matosiuk, D., Theoretical studies on the structure and symmetry of the transmembrane region of glutamatergic GluR5 receptor, J. Med. Chem., 2008, 51(13), pp. 3765–3776. https://doi.org/0.1021/jm7011694

  18. Sobolevsky, A.I., Yelshansky, M.V., and Wollmuth, L.P., Different gating mechanisms in glutamate receptor and K+ channels, J. Neurosci., 2003, vol. 23(20), pp. 7559–7568. https://doi.org/10.1523/JNEUROSCI.23-20-07559.2003

  19. Sobolevsky, A.I., Rooney, L., and Wollmuth, L.P., Staggering of subunits in NMDAR channels, Biophys. J., 2002, vol. 83(6), pp. 3304–3314. https://doi.org/10.1016/S0006-3495(02)75331-9

  20. Sobolevsky, A.I., Beck, C., and Wollmuth, L.P., Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating, Neuron, 2002, vol. 33(1), pp. 75–85. https://doi.org/10.1016/s0896-6273(01)00560-8

  21. Hoffmann, J., Villmann, C., Werner, M., and Hollmann, M., Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels, Mol. Cell. Neurosci., 2006, vol. 33(4), pp. 358–370. https://doi.org/10.1016/j.mcn.2006.08.004

  22. Sobolevsky, A.I., Rosconi, M.P., and Gouaux, E., X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 2009, vol. 462(7274), pp. 745–756. https://doi.org/10.1038/nature08624

  23. Yelshanskaya, M.V., Li, M., and Sobolevsky, A.I., Structure of an agonist-bound ionotropic glutamate receptor, Science, 2014, vol. 345(6200), pp. 1070–1074. https://doi.org/10.1126/science.1256508

  24. Karakas, E. and Furukawa, H., Crystal structure of a heterotetrameric NMDA receptor ion channel, Science, 2014, vol. 344(6187), pp. 992–997. https://doi.org/10.1126/science.1251915

  25. Durr, K.L., Chen, L., Stein, R.A., De Zorzi, R., Folea, I.M., Walz, T., McHaourab, H.S., and Gouaux, E., Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states, Cell, 2014, vol. 158(4), pp. 778–792. https://doi.org/10.1016/j.cell.2014.07.023

  26. Twomey, E.C., Yelshanskaya, M.V., Vassilevski, A.A., and Sobolevsky, A.I., Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors, Neuron, 2018, vol. 99(5), pp. 956–968 e4. https://doi.org/10.1016/j.neuron.2018.07.027

  27. Herguedas, B., Watson, J.F., Ho, H., Cais, O., Garcia-Nafria, J., and Greger, I.H., Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP gamma8, Science, 2019, vol. 364(6438). https://doi.org/10.1126/science.aav9011

  28. Zhao, Y., Chen, S., Swensen, A.C, Qian, W.J., and Gouaux, E., Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM, Science, 2019, vol. 364(6438), pp. 355–362. https://doi.org/10.1126/science.aaw8250

  29. Phillips, M.B., Nigam, A., and Johnson, J.W., Interplay between Gating and Block of Ligand-Gated Ion Channels, Brain. Sci., 2020, vol. 10(12). https://doi.org/10.3390/brainsci10120928

  30. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, R., The open pore conformation of potassium channels, Nature, 2002, vol. 417(6888), pp. 523–526. https://doi.org/10.1038/417523a

  31. Chang, H.R. and Kuo, C.C., The activation gate and gating mechanism of the NMDA receptor, J. Neurosci., 2008, vol. 28(7), pp. 1546–1556. https://doi.org/10.1523/JNEUROSCI.3485-07.2008

  32. Zuo, J., De Jager, P.L., Takahashi, K.A., Jiang, W., Linden, D.J, and Heintz, N., Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene, Nature, 1997, vol. 388(6644), pp. 769–773. https://doi.org/10.1038/42009

  33. Kashiwagi, K., Masuko, T., Nguyen, C.D., Kuno, T., Tanaka, I., Igarashi, K., and Williams, K., Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore, Mol. Pharmacol., 2002, vol. 61(3), pp. 533–545. https://doi.org/10.1124/mol.61.3.533

  34. Yuan, H., Erreger, K., Dravid, S.M., and Traynelis, S.F., Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3, J. Biol. Chem., 2005, vol. 280(33), pp. 29708–29716. https://doi.org/10.1074/jbc.M414215200

  35. Sobolevsky, A.I., Yelshansky, M.V., and Wollmuth, L.P., State-dependent changes in the electrostatic potential in the pore of a GluR channel, Biophys. J., 2005, vol. 88(1), pp. 235–242. https://doi.org/10.1529/biophysj.104.049411

  36. Berneche, S. and Roux, B., A gate in the selectivity filter of potassium channels, Structure, 2005, vol. 13(4), pp. 591–600. https://doi.org/10.1016/j.str.2004.12.019

  37. Liu, Y., Jurman, M.E., and Yellen, G., Dynamic rearrangement of the outer mouth of a K+ channel during gating, Neuron, 1996, vol. 16(4), pp. 859–867. https://doi.org/10.1016/s0896-6273(00)80106-3

  38. Cao, E., Liao, M., Cheng, Y., and Julius, D., TRPV1 structures in distinct conformations reveal activation mechanisms, Nature, 2013, vol. 504(7478), pp. 113–118. https://doi.org/10.1038/nature12823

  39. Chen, S., Zhao, Y., Wang, Y., Shekhar, M., Tajkhorshid, E., and Gouaux, E., Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM, Cell, 2017, vol. 170(6), pp. 1234–1246 e1214. https://doi.org/10.1016/j.cell.2017.07.045

  40. Twomey, E.C., Yelshanskaya, M.V., Grassucci, R.A., Frank, J., and Sobolevsky, A.I., Channel opening and gating mechanism in AMPA-subtype glutamate receptors, Nature, 2017, vol. 549(7670), pp. 60–65. https://doi.org/10.1038/nature23479

  41. MacDonald, J.F., Bartlett, M.C., Mody, I., Pahapill, P., Reynolds, J.N., Salter, M.W., Schneiderman, J.H., and Pennefather, P.S., Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones, J. Physiol., 1991, vol. 432, pp. 483–508. https://doi.org/10.1113/jphysiol.1991.sp018396

  42. Bormann, J., Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels, Eur. J. Pharmacol., 1989, vol. 166(3), pp. 591–592. https://doi.org/10.1016/0014-2999(89)90385-3

  43. Kroemer, R.T., Koutsilieri, E., Hecht, P., Liedl, K.R., Riederer, P., and Kornhuber, J., Quantitative analysis of the structural requirements for blockade of the N-methyl-D-aspartate receptor at the phencyclidine binding site, J. Med. Chem., 1998, vol. 41(3), pp. 393–400. https://doi.org/10.1021/jm9704412

  44. Manallack, D.T., Wong, M.G., Costa, M., Andrews, P.R., and Beart, P.M., Receptor site topographies for phencyclidine-like and sigma drugs: predictions from quantitative conformational, electrostatic potential, and radioreceptor analyses, Mol. Pharmacol., 1998, vol. 34(6), pp. 863–879.

  45. Bolshakov, K.V., Kim, K.H., Potapjeva, N.N., Gmiro, V.E., Tikhonov, D.B., Usherwood, P.N.R., Mellor, I.R., and Magazanik, L.G., Design of antagonists for NMDA and AMPA receptors, Neuropharmacology, 2005, vol. 49(2), pp. 144–155. https://doi.org/10.1016/j.neuropharm.2005.02.007

  46. Bolshakov, K.V., Tikhonov, D.B., Gmiro, V.E, and Magazanik, L.G., Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-D-aspartate and AMPA receptors of rat brain is revealed by channel blockade, Neurosci. Lett., 2000, vol. 291(2), pp. 101–104. https://doi.org/10.1016/s0304-3940(00)01386-0

  47. Brackley, P.T., Bell, D.R., Choi, S.K., Nakanishi, K., and Usherwood, P.N., Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins, J. Pharmacol. Exp. Ther., 1993, 266(3), pp. 1573–1580.

  48. Antonov, S.M., Johnson, J.W., Lukomskaya, N.Y., Potapyeva, N.N., Gmiro, V.E., and Magazanik, L.G., Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants, Mol. Pharmacol., 1995, vol. 47(3), pp. 558–567.

  49. Bolshakov, V., Gapon, S.A., and Magazanik, L.G., Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus, J. Physiol., 1991, vol. 439, pp. 15–35. https://doi.org/10.1113/jphysiol.1991.sp018654

  50. Tikhonov, D.B. and Magazanik, L.G., Voltage dependence of open channel blockade: onset and offset rates, J. Membr. Biol., 1998 161(1), pp. 1–8. https://doi.org/10.1007/s002329900309

  51. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A., Magnesium gates glutamate-activated channels in mouse central neurones, Nature, 1984, 307(5950), pp. 462–465. https://doi.org/10.1038/307462a0

  52. Mayer, M.L., Westbrook, G.L., and Guthrie, P.B., Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature, 1984, vol. 309(5965), pp. 261–263. https://doi.org/10.1038/309261a0

  53. Kotermanski, S.E. and Johnson, J.W., Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine, J. Neurosci., 2009, vol. 29(9), pp. 2774–2779. https://doi.org/10.1523/JNEUROSCI.3703-08.2009

  54. Nikolaev, M.V., Magazanik, L.G., and Tikhonov, D.B., Influence of external magnesium ions on the NMDA receptor channel block by different types of organic cations, Neuropharmacology, 2012, vol. 62(5–6), pp. 2078–2085. https://doi.org/10.1016/j.neuropharm.2011.12.029

  55. Otton, H.J., Lawson McLean, A., Pannozzo, M.A., Davies, C.H., and Wyllie, D.J., Quantification of the Mg2+-induced potency shift of amantadine and memantine voltage-dependent block in human recombinant GluN1/GluN2A NMDARs, Neuropharmacology, 2011, vol. 60(2–3), pp. 388–396. https://doi.org/10.1016/j.neuropharm.2010.10.008

  56. Blanpied, T.A., Clarke, R.J., and Johnson, J.W., Amantadine inhibits NMDA receptors by accelerating channel closure during channel block, J. Neurosci., 2005, vol. 25(13), pp. 3312–3322. https://doi.org/10.1523/JNEUROSCI.4262-04.2005

  57. Sobolevsky, A.I, Koshelev, S.G., and Khodorov, B.I., Probing of NMDA channels with fast blockers, J. Neurosci., 1999, vol. 19(24), pp. 10611–10626. https://doi.org/10.1523/JNEUROSCI.19-24-10611.1999

  58. Antonov, S.M. and Johnson, J.W., Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons, J. Physiol., 1996, vol. 493 (Pt 2), pp. 425–445. https://doi.org/10.1113/jphysiol.1996.sp021394

  59. Benveniste, M. and Mayer, M.L., Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine, J. Physiol., 1995, vol. 483 (Pt 2), pp. 367–384. https://doi.org/10.1113/jphysiol.1995.sp020591

  60. Barygin, O.I., Gmiro, V.E., Kim, K.K., Magazanik, L.G., and Tikhonov, D.B., Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives, Neurosci. Lett., 2009, vol. 451(1), pp. 29–33. https://doi.org/10.1016/j.neulet.2008.12.036

  61. Vorobjev, V.S. and Sharonova, I.N., Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner, Eur. J. Pharmacol., 1994, vol. 253(1–2), pp. 1–8. https://doi.org/10.1016/0014-2999(94)90750-1

  62. Bolshakov, K.V., Gmiro, V.E., Tikhonov, D.B., and Magazanik, L.G., Determinants of trapping block of N-methyl-D-aspartate receptor channels, J. Neurochem., 2003, vol. 87(1), pp. 56–65. https://doi.org/10.1046/j.1471-4159.2003.01956.x

  63. Mealing, G.A., Lanthorn, T.H., Small, D.L., Murray, R.J., Mattes, K.C., Comas, T.M., and Morley, P., Structural modifications to an N-methyl-D-aspartate receptor antagonist result in large differences in trapping block, J. Pharmacol. Exp. Ther., 2001, vol. 297(3), pp. 906–914.

  64. Blanpied, T.A., Boeckman, F.A., Aizenman, E., and Johnson, J.W., Trapping channel block of NMDA-activated responses by amantadine and memantine, J. Neurophysiol., 1997, vol. 77(1), pp. 309–323. https://doi.org/10.1152/jn.1997.77.1.309

  65. Taverna, F.A., Cameron, B.R., Hampson, D.L., Wang, L.Y., and MacDonald, J.F., Sensitivity of AMPA receptors to pentobarbital, Eur. J. Pharmacol., 1994, vol. 267(3), pp. R3–5. https://doi.org/10.1016/0922-4106(94)90161-9

  66. Yamakura, T., Sakimura, K., Mishina, M., and Shimoji, K., The sensitivity of AMPA-selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the alpha 2 subunit, FEBS Lett., 1995, vol. 374(3), pp. 412–414. https://doi.org/10.1016/0014-5793(95)01163-9

  67. Tikhonov, D.B., Samoilova, M.V., Buldakova, S.L., Gmiro, V.E., and Magazanik, L.G., Voltagedependent block of native AMPA receptor channels by dicationic compounds, Br. J. Pharmacol., 2000, vol. 129(2), pp. 265–274. https://doi.org/10.1038/sj.bjp.0703043

  68. Magazanik, L.G., Buldakova, S.L., Samoilova, M.V., Gmiro, V.E., Mellor, I.R., and Usherwood, P.N., Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives, J. Physiol., 1997, vol. 505 (Pt 3), pp. 655–663. https://doi.org/10.1111/j.1469-7793.1997.655ba.x

  69. Bahring, R., Bowie, D., Benveniste, M., and Mayer, M.L., Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines, J. Physiol., 1997, vol. 502 (Pt 3), pp. 575–589. https://doi.org/10.1111/j.1469-7793.1997.575bj.x

  70. Bahring, R. and Mayer, M.L., An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels, J. Physiol., 1998, vol. 509 (Pt 3), pp. 635–650. https://doi.org/10.1111/j.1469-7793.1998.635bm.x

  71. Tikhonova, T.B., Barygin, O.I., Gmiro, V.E., Tikhonov, D.B., and Magazanik, L.G., Organic blockers escape from trapping in the AMPA receptor channels by leaking into the cytoplasm, Neuropharmacology, 2008, vol. 54(4), pp. 653–664. https://doi.org/10.1016/j.neuropharm.2007.11.014

  72. Zaitsev, A.V., Kim, K.K., Fedorova, I.M., Dorofeeva, N.A., Magazanik, L.G., and Tikhonov, D.B., Specific mechanism of use-dependent channel block of calcium-permeable AMPA receptors provides activity-dependent inhibition of glutamatergic neurotransmission, J. Physiol., 2011, vol. 589(7), pp. 1587–1601.

  73. Bowie, D., Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins, J. Biol. Chem., 2018, vol. 293(48), pp. 18789–18802. https://doi.org/10.1113/jphysiol.2011.204362

  74. Ferrer-Montiel, A.V., Sun, W., and Montal, M., Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine, Proc. Natl. Acad. Sci. USA, 1995, vol. 92(17), pp. 8021–8025. https://doi.org/10.1073/pnas.92.17.8021

  75. Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J.P., Gunther, W., Seeburg, P.H., and Sakmann, B., Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor, Science, 1992, vol. 257(5075), pp. 1415–1419. https://doi.org/10.1126/science.1382314

  76. Mori, H., Masaki, H., Yamakura, T., and Mishina, M., Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel, Nature, 1992, vol. 358(6388), pp. 673–675. https://doi.org/10.1038/358673a0

  77. Tikhonov, D.B., Zhorov, B.S., and Magazanik, L.G., Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors, Biophys. J., 1999, vol. 77(4), pp. 1914–1926. https://doi.org/10.1016/S0006-3495(99)77033-5

  78. Nelson, J.K., Frolund, S.U., Tikhonov, D.B., Kristensen, A.S., and Stromgaard, K., Synthesis and biological activity of argiotoxin 636 and analogues: selective antagonists for ionotropic glutamate receptors, Angew Chem. Int. Ed. Engl., 2009, vol. 48(17), pp. 3087–3091. https://doi.org/10.1002/anie.200805426

  79. Andersen, T.F., Tikhonov, D.B., Bolcho, U., Bolshakov, K., Nelson, J.K., Pluteanu, F., Mellor, I.R., and Egebjerg, J., Stromgaard, K., Uncompetitive antagonism of AMPA receptors: Mechanistic insights from studies of polyamine toxin derivatives, J. Med. Chem., 2006, vol. 49(18), pp. 5414–5423. https://doi.org/10.1021/jm060606j

  80. Franzyk, H., Grzeskowiak, J.W., Tikhonov, D.B., Jaroszewski, J.W., and Mellor, I.R., The Effects of Conformational Constraints in the Polyamine Moiety of Philanthotoxins on AMPAR Inhibition, ChemMedChem., 2014, vol. 9(8), pp. 1725–1731. https://doi.org/10.1002/cmdc.201402109

  81. Zhao, Y., Huang, G., Wu, Q., Wu, K., Li, R., Lei, J., Pan, X., and Yan, N., Cryo-EM structures of apo and antagonist-bound human Cav3.1, Nature, 2019, vol. 576(7787), pp. 492–497. https://doi.org/10.1038/s41586-019-1801-3

  82. Song, X., Jensen, M.O., Jogini, V., Stein, R.A., Lee, C.H., McHaourab, H.S., Shaw, D.E., and Gouaux, E., Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature, 2018, vol. 556(7702), pp. 515–519. https://doi.org/10.1038/s41586-019-1801-3

  83. Alam, S., Lingenfelter, K.S., Bender, A.M., and Lindsley, C.W., Classics in Chemical Neuroscience: Memantine, ACS Chem. Neurosci., 2017, vol. 8(9), pp. 1823–1829. https://doi.org/10.1021/acschemneuro.7b00270

  84. Wei, Y., Chang, L., and Hashimoto, K., A historical review of antidepressant effects of ketamine and its enantiomers, Pharmacol. Biochem. Behav., 2020, vol. 190, p. 172870. https://doi.org/10.1016/j.pbb.2020.172870

  85. Povysheva, N.V. and Johnson, J.W., Effects of memantine on the excitation-inhibition balance in prefrontal cortex, Neurobiol Disease, 2016, vol. 96, pp. 75–83. https://doi.org/10.1016/j.nbd.2016.08.006

  86. Nikolaev, M.V., Chizhov, A.V., and Tikhonov, D.B., Molecular mechanisms of action determine inhibition of paroxysmal depolarizing shifts by NMDA receptor antagonists in rat cortical neurons, Neuropharmacology, 2020, vol. 184, p. 108443. https://doi.org/10.1016/j.neuropharm.2020.108443

  87. Malkin, S.L., Kim, K.K., Tikhonov, D.B., Magazanik, L.G., and Zaitsev, A.V., Statistical models suggest presence of two distinct subpopulations of miniature epscs in fast-spiking interneurons of rat prefrontal cortex, Neuroscience, 2015, vol. 301, pp. 508–519. https://doi.org/10.1016/j.neuroscience.2015.06.034

Download references

Funding

This review has been supported by State budget funding within a State assignment to Sechenov Institute of Evolutionary Physiology and Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Tikhonov.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflict of interest.

Additional information

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 403–416https://doi.org/10.31857/S0869813921040142.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, D.B. Channel Blockers of Ionotropic Glutamate Receptors. J Evol Biochem Phys 57, 325–336 (2021). https://doi.org/10.1134/S0022093021020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020149

Keywords:

Navigation