Skip to main content
Log in

Anatomical and Physiological Peculiarities of the Heart in Jawless and Jawed Fish

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

The heart is … an organ that gives motion to circulatory fluid

(Randall, Davie, 1980)

The word heart is used to denote chambered circulatory pumps, but is also applied to any segment of the circulation that pumps fluid

(Simões-Costa et al., 2005)

Abstract

The heart of jawless fish (Cyclostomata; lamprey, hagfish) and jawed fish (Teleostei) is homologous to the heart of higher vertebrates. A study of this organ in archaic Cyclostomata and Teleostei, which are different in their evolutionary “ages”, genetic characteristics and hypoxia tolerance, is of particular interest in the search for the factors that determine myocardial resistance to oxygen deficiency. Cyclostomata and Teleostei share the same branchial type of respiration and the presence of only one circle of blood circulation. The principal contractile organ that provides blood circulation, the branchial heart, consists of two chambers. Hagfish make up the oldest class of extant vertebrates whose circulation is maintained by the non-innervated (aneural) branchial heart and three sets of accessory “hearts”. Lampreys are the first vertebrates whose heart receives innervation from the vagus nerve. In turn, Teleostei are the first to receive sympathetic innervation of the heart from the vagosympathetic trunks. In the heart of Cyclostomata and Teleostei, no signs of the cardiac conduction system similar to that in higher vertebrates were found, which does not negate the existence of a well-coordinated mechanism for the propagation of myocardial excitation–contraction coupling. The mechanism of heart rhythm generation links the electrical processes that arise in the myocardium with the expression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels). In the heart of hagfish and teleosts, six isoforms of HCN channels are expressed. The regulated distribution density of HCN channels in the myocardium may be a precursor of the cardiac conduction system which characterizes higher vertebrates. The expression of the three cardiac HCN isoforms (HCN2, HCN3 and HCN4) in such a relict taxon as hagfish suggests their presence in the myocardium of the common ancestor of vertebrates before the divergence with Myxiniformes. This may also suggest a particular significance of HCN2, HCN3 and HCN4 in the formation of cardiac activity at the time of the emergence of a multi-chambered myogenic heart. It is assumed that the evolutionary progress in the archaic groups of primitive vertebrates was aimed at the “creation” of a faster effector system for the regulation of cardiac activity and dual (excitatory/inhibitory) control of myocardial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Icardo, J.M., Heart morphology and anatomy, Fish Physiol., 2017, vol. 36, pp. 1–54. https://doi.org/10.1016/bs.fp.2017.05.002

  2. Grimes, A.C. and Kirby, M.L., The outflow tract of the heart in fishes: anatomy, genes and evolution, Fish Biol., 2009, vol. 74(5), pp. 983–1036. https://doi.org/10.1111/j.1095-8649.2008.02125.x

  3. Yamauchi, A., Fine Structure of Fish Heart. The Hearts and Heart-like Organs, vol. 1, Bourne, G.H. and Bourne, G.H., Eds., New York, 1980, pp. 119–148.

  4. Asnani, A. and Peterson, R.T., The zebrafish as a tool to identify novel therapies for human cardiovascular disease, Dis. Model Mech., 2014, vol. 7, pp. 763–767. https://doi.org/10.1242/dmm.016170

  5. Chico, T.J.A., Ingham, P.W., and Crossman, D.C., Modeling cardiovascular disease in the zebrafish, Trends Cardiovasc. Med., 2008, vol. 18(4), pp. 150–155. https://doi.org/10.1016/j.tcm.2008.04.002

  6. Kuraku, S. and Kuratani, S., Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences, Zool. Sci., 2006, vol. 23, pp. 1053–1064. https://doi.org/10.2108/zsj.23.1053

  7. Bayramov, А.V., Ermakova, G.V., Kucheryavyi, A.V., and Zaraisky, A.G., Lampreys—“living fossils” in researches of early development and regeneration of the vertebrates, Ontogenesis, 2018, vol. 49(5), pp. S3–S14. https://doi.org/10.1134/S0475145018080013

  8. Farrell, A.P. and Stecyk, J.A.W., The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates, Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 2007, vol. 147(2), pp. 300–312. https://doi.org/10.1016/j.cbpa.2007.01.021

  9. Abou Chakra, M., Hall, B.K., and Stone, J.R., Using information in taxonomists' heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history, Histor. Biol., 2014, vol. 25(5), pp. 652–660. https://doi.org/10.1080/08912963.2013.825792

  10. Burkhard, S., van Eif, V., Garric, L., Christoffels, V.M., and Bakkers, J., On the evolution of the cardiac pacemaker, J. Cardiovasc. Dev. Dis., 2017, vol. 4(2), p. 4. https://doi.org/10.3390/jcdd4020004

  11. Farrell, A.P., Cardiovascular systems in primitive fishes, Fish Physiology: Primitive Fishes, McKenzie, D.J., Farrell, A.P., and Brauner, C.J., Eds., New York, Elsevier, 2007, pp. 53–120.

  12. Baker, D.W., Sardella, B., Rummer, J.L., Sackville, M., and Brauner, C.J., Hagfish: champions of CO2 tolerance question the origins of vertebrate gill function, Sci. Rep., 2015, vol. 5, 11182. https://doi.org/10.1038/srep11182

  13. Jensen, B., Boukens, B.J.D., Postma, A.V., Gunst, Q.D., van den Hoff, M.J.B., Antoon, F., Moorman, M., Wang, T., and Christoffels, V.M., Identifying the evolutionary building blocks of the cardiac conduction system, PLOS One, 2012, vol. 7(9), e44231. https://doi.org/10.1371/journal.pone.0044231

  14. Hol, R. and Johansen, K., A cineradiographic study of the central circulation in the hagfish, Myxine glutinosa L., J. Exp., 1960, vol. 37, pp. 469–473.

  15. Satchell, G.H., Cardiac function in the hagfish, Myxine (Myxinoidea: Cyclostomata), Acta Zool., 1986, vol. 67, pp. 115–122.

  16. Johnsson, M. and Axelsson, M., Control of the systemic heart and the portal heart of Myxine glutinosa, J. Exp. Biol., 1996, vol. 199, pp. 1429–1434.

  17. Forster, M.E., Axelsson, M., Farrell, A.P., and Nilsson, S., Cardiac function and circulation in hagfishes, Can. J. Zool., 1991, vol. 69, pp. 1985–1992. https://doi.org/10.1139/z91-277

  18. Icardo, J.M., Colvee, E., Schorno, S., Lauriano, E.R., Fudge, D.S., Glover, C.N., and Zaccone, G., Morphological analysis of the hagfish heart. I. The ventricle, the arterial connection and the ventral aorta, J. Morphol., 2016, vol. 277(3), pp. 326–340. https://doi.org/10.1002/jmor.20498

  19. Randall, D.J. and Davie, P.S., The Hearts of Urochordates and Cephalochordates. Hearts and Heart-like Organs, Bourne, G.H., Ed., New York, Academic Press, 1980, pp. 41–59. https://doi.org/10.1016/C2013-0-10405-9

  20. Chapman, C.B., Jensen, D., and Wildenthal, K., On circulatory control mechanisms in the Pacific hagfish, Circ. Res., 1963, vol. 12, pp. 427–440.

  21. Cox, G.K., Sandblom, E., and Farrell, A.P., Cardiac responses to anoxia in the Pacific hagfish, Eptatretus stoutii, J. Exp. Biol., 2010, vol. 213(21), pp. 3692–3698. https://doi.org/10.1242/jeb.046425

  22. Augustinsson, K.B., Fänge, R., Johnels, A., and Östlund, E., Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra), J. Physiol., 1956, vol. 131(2), pp. 257–276. https://doi.org/10.1113/jphysiol.1956.sp005461

  23. Johansen, K., Circulation in the hagfish, Myxine glutinosa L., Biol. Bull., 1960, vol. 118(2), pp. 289–295.

  24. Forster, M.E., The blood sinus system of hagfish: its significance in a low-pressure circulation, Comp. Biochem. Physiol., 1997, vol. 116(3), pp. 239–244. https://doi.org/10.1016/S0300-9629(96)00215-0

  25. Wilson, C.M., Roa, J.N., Cox, G.K., Tresguerres, M., and Farrell, A.P., Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish, J. Exp. Biol., 2016, vol. 219, pp. 3227–3236. https://doi.org/10.1242/jeb.138198

  26. Cox, G.K., Sandblom, E., Richards, J.G., and Farrell, A.P., Anoxic survival of the Pacific hagfish (Eptatretus stoutii), J. Comp. Physiol., 2011, vol. 181(3), pp. 361–371. https://doi.org/10.1007/s00360-010-0532-4

  27. Satchell, G.H., Physiology and Form of Fish Circulation, Cambridge, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511983719

  28. Davie, P.S., Forster, M.E., Davison, B., and Satchell, G.H., Cardiac function in the New Zealand hagfish, Eptatretus cirrhatus, Physiol. Zool., 1987, vol. 60(2), pp. 233–240.

  29. Helle, K.B., Miralto, A., Pihl, K.E., and Tota, B., Structural organization of the normal and anoxic heart of Scyllium stellare, Cell Tiss. Res., 1983, vol. 231(2), 399–414. https://doi.org/10.1007/bf00222190

  30. Poupa, O., Ask, J.A., and Helle, K.B., Absence of a calcium paradox in the cardiac ventricle of the Atlantic hagfish (Myxine glutinosa), Comp. Biochem. Physiol., 1984, vol. 78(1), pp. 181–183. https://doi.org/10.1016/0300-9629(84)90113-0

  31. Lomsky, M., Ekroth, R., and Poupa, O., The calcium paradox and its protection by hypothermia in human myocardium, Eur. Heart J., 1983, vol. 4(H), pp. 139–142. https://doi.org/10.1093/eurheartj/4.suppl_h.139

  32. Bloom, G., Östlund, E., von Euler, U.S., Lishajko, F., Ritzen, M., and Adams-Ray, J., Studies on catecholamine-containing granules of specific cells in cyclostome hearts, Acta Physiol. Scand., 1961, vol. 53(185), pp. 1–34.

  33. Hirsch, E.F., Jellinek, M., and Cooper, T., Innervation of the systemic heart of the California hagfish, Circ. Res., 1964, vol. XIV, pp. 212–217.

  34. Bernier, N.J. and Perry, S.F., Control of the catecholamine and serotonin release from the chromaffin tissue of the Atlantic hagfish, J. Exp. Biol., 1996, vol. 199, pp. 2485–2497.

  35. Perry, S.F., Fritsche, R., and Thomas, S., Storage and release of catecholamines from chromaffin tissue of the Atlantic hagfish Myxine glutinosa, J. Exp. Biol., 1993, vol. 183, pp. 165–184.

  36. Randall, D.J. and Perry, S.F., Catecholamines. Fish Physiology—The Cardiovascular System, vol. XIIB, Hoar W.S., Randall, D.J., and Farrell, A.P., Eds., New York, Academic Press, 1992, pp. 255–300. https://doi.org/10.1016/S1546-5098(08)60011-4

  37. Axelsson, M., Farrel, A.P., and Nilsson, S., Effects of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish Myxina glutinosa, J. Exp. Biol., 1990, vol. 151, pp. 297–316.

  38. Forster, M.E., Cardiovascular Function in Hagfishes, The Biology of Hagfishes, Jorgensen, J.M., Lomholt, J.P., Weber, R.E., and Malte, H., Eds., London, Springer, 1998, pp. 237–258.

  39. Marvin, W.J. Jr, Hermsmeyer, K., McDonald, R.I., Roskoski, L.M., and Roskoski, R., Ontogenesis of cholingergic innervation in the rat heart, Circ. Res., 1980, vol. 46(5), pp. 690–695. https://doi.org/10.1161/01.res.46.5.690

  40. Jensen, B., Boukens, B.J.D., Wang, T., Moorman, A.F.M., and Christoffels, V.M., Evolution of the sinus venosus from fish to human, J. Cardiovasc. Dev. Dis., 2014, vol. 1, pp. 14–28. https://doi.org/10.3390/jcdd1010014

  41. Wilson, C.M. and Farrell, A.P., Pharmacological characterization of the heartbeat in an extant vertebrate ancestor, the Pacific hagfish, Eptatretus stoutii, Comp. Biochem. Physiol., 2013, vol. 164(1), pp. 258–263. https://doi.org/10.1016/j.cbpa.2012.09.013

  42. Jensen, D., The aneural heart of the hagfish, Ann. NY Acad. Sci., 1965, vol. 127(1), pp. 443–458.

  43. Randall, D.J., The circulatory system, Fish Physiology: The Nervous System, Circulation and Respiration, Hoar W.S. and Randall, D.J., Eds., New York and London, Academic Press, 1970, pp. 133–172. https://doi.org/10.1016/S1546-5098(08)60129-6

  44. Wilson, C.M., Stecyk, J.A.W., Couturier, C.S., Nilsson, G.E., Farrell A.P. Phylogeny and effects of anoxia on hyperpolarization-activated, cyclic nucleotide-gated channel gene expression in the heart of a primitive chordate, the Pacific hagfish (Eptatretus stoutii), J. Exp. Biol., 2013, vol. 216, pp. 4462–4472. https://doi.org/10.1242/jeb.094912

  45. Marionneau, C., Couette, B., Liu, J., Li, H., Mangoni, M.E., Nargeot, J., Lei, M., Escande, D., and Demolombe, S., Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart, J. Physiol., 2005, vol. 562, pp. 223–234. https://doi.org/10.1113/jphysiol.2004.074047

  46. Moosmang, S., Stieber, J., Zong, X., Hofmann, F., and Ludwig, A., Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues, Eur. J. Biochem., 2001, vol. 268(6), pp. 1646–1652. https://doi.org/10.1046/j.1432-1327.2001.02036.x

  47. Wang, T., Evolution of the cardiovascular autonomic nervous system in vertebrates, Primer on the Autonomic Nervous System, Robertson, D., Biaggioni, I., Burnstock, G., Low, P.A., and Paton, J.F.R., Eds., Oxford, Academic Press, 2012, pp. 669–674.

  48. Shattock, M.J. and Rosen, M.R., The control of heart rate: the physiology of the sinoatrial node and the role of the If current, Dialogues in Cardiovascular Medicine, 2006, vol. 11(1), pp. 5–17.

  49. Fange, R., The circulatory system, The Biology of Lampreys, Hardisty, M.W. and Potter, I.C., Eds., London, Academic, 1972, vol. 2, pp. 241–259.

  50. Vornanen, M. and Haverinen, J., A significant role of sarcoplasmic reticulum in cardiac contraction of a basal vertebrate, the river lamprey (Lampetra fluviatilis), Acta Physiol., 2013, vol. 207(2), pp. 269–279. https://doi.org/10.1111/j.1748-1716.2012.02479.x

  51. Wright, G.M., Structure of the conus arteriosus and ventral aorta in the sea lamprey, Petromyzon marinus, and the Atlantic hagfish, Myxine glutinosa: microfibrils, a major component, Can. J. Zool., 1984, vol. 62(12), pp. 2445–2456. https://doi.org/10.1139/z84-361

  52. Hardisty, M.W., Biology of the Cyclostomes, London, Springer, 1979.

  53. Macey, D.J., Clarke, L.M., and Potter, I.C., Basal oxygen consumption, ventilatory frequency, and heart rate during the protracted spawning run of the Southern Hemisphere lamprey Geotria australis, J. Comp. Physiol., 1991, vol. 161(5), pp. 525–531.

  54. Johansen, K., Lenfant, C., and Hanson, D., Gas exchange in the lamprey, Entosphenus tridentatus, Comp. Biochem. Physiol., 1973, vol. 44(1), pp. 107–119.

  55. Otsuka, N., Chihara, J., Sakurada, H., and Kanda, S., Catecholamine-storing cells in the cyclostome heart, Arch. Histol. Jpn., 1977, vol. 40, pp. 241–244. https://doi.org/10.1679/aohc1950.40.supplement_241

  56. Dashow, L. and Epple, A., Plasma catecholamines in the lamprey: intrinsic cardiovascular messengers? Comp. Biochem. Physiol., 1985, vol. 82(1), pp. 119–122. https://doi.org/10.1016/0742-8413(85)90217-8

  57. Jensen, B., Cardioregulation in an aneural heart, Comp. Biochem. Physiol., 1961, vol. 2(3), pp. 181–192. https://doi.org/10.1016/0010-406X(61)90061-5

  58. Nilsson, S. and Holmgren, S., The autonomic nervous system and chromaffin tissue in hagfishes, The Biology of Hagfish, Jorgensen, J.M., Lomholt, J.P., Weber, R.E., and Malte, H., Eds., London, Chapman & Hall, 1998, pp. 480–495.

  59. Rovainen, C.M., Neurobiology of lampreys, Physiol. Rev., 1979, vol. 59(4), pp. 1007–1077. https://doi.org/10.1152/physrev.1979.59.4.1007

  60. Jensen, D., Intrinsic cardiac rate regulation in the sea lamprey, Petromyzon marinus and rainbow trout, Salmo gairdneri, Comp. Biochem. Physiol., 1969, vol. 30(4), pp. 685–690. https://doi.org/10.1016/0010-406X(69)92147-1

  61. Hove-Madsen, L., Llach, A., and Tort, L., Quantification of calcium release from the sarcoplasmic reticulum in rainbow trout atrial myocytes, Pflügers Arch., 1999, vol. 438, pp. 545–552. https://doi.org/10.1007/s004249900082

  62. Haverinen, J. and Vornanen, M., Comparison of sarcoplasmic reticulum calcium content in atrial and ventricular myocytes of three teleost fish species, Am. J. Physiol., 2009, vol. 297, pp. R1180–R1187. https://doi.org/10.1152/ajpregu.00022.2009

  63. Vornanen, M., Temperature and Ca2+ dependence of [3H]ryanodine binding in the burbot (Lota lota L.) heart, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, vol. 290(2), pp. R345–351. https://doi.org/10.1152/ajpregu.00443.2005

  64. Haverinen, J., Egginton, S., and Vornanen, M., Electrical excitation of the heart in a basal Vertebrate, the European river lamprey (Lampetra fluviatilis), Physiol. Biochem. Zool., 2014, vol. 87(6), pp. 817–828. https://doi.org/10.1086/678954

  65. Claridge, N. and Potter, I.C., Oxygen consumption, ventilatory frequency and heart rate of lampreys (Lamperta fluvialis) during their spawning run, J. Exp. Biol., 1975, vol. 63(1), pp. 193–206.

  66. Heimberg, A.M., Cowper-Sallari, R., Sémon, M., Donoghue, P.C.J., and Peterson, K.J., From the Cover: microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate, Proc. Natl. Acad. Sci. USA, 2010, vol. 107(45), pp. 19379–19383. https://doi.org/10.1073/pnas.1010350107

  67. Yousaf, M.N., Amin, A.B., Koppang, E.O., Vuolteenaho, O., and Powell, M.D., Localization of natriuretic peptides in the cardiac pacemaker of Atlantic salmon (Salmo salar L.), Acta Histochem., 2012, vol. 114(8), pp. 819–826. https://doi.org/10.1016/j.acthis.2012.02.002

  68. Farrell, A.P. and Smith, F., Cardiac form, function and physiology, Fish Physiol., 2017, vol. 36, pp. 155–264. https://doi.org/10.1016/bs.fp.2017.07.001

  69. Haverinen, J. and Vornanen, M., Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, pp. R1023–R1032. https://doi.org/10.1152/ajpregu. 00432.2006

  70. Farrell, A.P. and Jones, D.R., The heart, Fish Physiology, XIIA, Hoar, W.S., Randall, D.J., and Farrell, A.P., San Diego, Academic Press, 1992, pp. 1–73.

  71. Randall, D.J., Functional morphology of the heart in fishes, Am. Zool., 1968, vol. 8, pp. 179–189. https://doi.org/10.1093/icb/8.2.179

  72. Icardo, J.M. and Colvee, E., The atrioventricular region of the teleost heart. A distinct heart segment, Anat. Rec., 2011, vol. 294(2), pp. 236–242. https://doi.org/10.1002/ar.21320

  73. Santer, R.M. and Cobb, J.L.S., The fine structure of the heart of the teleost, Pleuronectes platessa L., Z. Zellforsch. Mikrosk. Anat., 1972, vol. 131(4), pp. 1–14. https://doi.org/10.1007/BF00307196

  74. Icardo, J.M., The Teleost heart: a morphological approach, Ontogeny and Phylogeny of the Vertebrate Heart, Sedmera, D. and Wang, T., Eds., New York, Springer, 2012, pp. 35–53. https://doi.org/10.1007/978-1-4614-3387-3_2

  75. Simões, K., Vicentini, C.A., Orsi, A.M., and Cruz, C., Myoarchitecture and vasculature of the heart ventricle in some freshwater teleosts, J. Anat., 2002, vol. 200(5), pp. 467–475.

  76. Tota, B., Cimini, V., Salvatore, G., and Zummo, G., Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranchs and teleost fishes, Am. J. Anat., 1983, vol. 167(1), pp. 15–32. https://doi.org/10.1002/aja.1001670103

  77. Tota, B. and Garofalo, F., Fish heart growth and function: from gross morphology to cell signaling and back, Ontogeny and Phylogeny of the Vertebrate Heart, Springer Science & Business Media, 2012, pp. 55–74. https://doi.org/10.1007/978-1-4614-3387-3

  78. Tota, B., Cerra, M.C., and Gattuso, A., Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a ‘whip-brake’ system of the endocrine heart, J. Exp. Biol., 2010, vol. 213, pp. 3081–3103. https://doi.org/10.1242/jeb.027391

  79. Tessadori, F., van Weerd, J.H., Burkhard, S.B., Verkerk, A.O., de Pater, E., Boukens, B.J., Vink, A., Christoffels, V.M., and Bakkers, J., Identification and functional characterization of cardiac pacemaker cells in zebrafish, PLoS One, 2012, vol. 7(10), e47644. https://doi.org/10.1371/journal.pone.0047644

  80. Kolesnikova, E.E. and Golovina, I.V., Oxidoreductase activities in oxyphilic tissues of the Black Sea ruff Scorpaena porcus under short-term hydrogen sulfide loading, J. Evol. Biochem. Physiol., 2020, vol. 56(5), pp. 459–470. https://doi.org/10.1134/S0022093020050099

  81. Nilsson, S., Abrahamsson, T., and Grove, D.J., Sympathetic nervous control of adrenaline release from the head kidney of the cod, Gadus morhua, Comp. Biochem. Physiol., 1976, vol. 55(2), pp. 123–127. https://doi.org/10.1016/0306-4492(76)90034-4

  82. Perry, S.F., Fritsche, R., Kinkead, R., and Nilsson, S., Control of catecholamine release in vivo and in situ in the Atlantic cod (Gadus morhua) during hypoxia, J. Exp. Biol., 1991, vol. 155, pp. 549–566.

  83. Fritsche, R. and Nilsson, S., Cardiovascular and ventilatory control during hypoxia, Fish Ecophysiology, Rankin, J.C. and Jensen, F.B., Eds., London, Chapman & Hall, 1993, pp. 180–206. https://doi.org/10.1007/978-94-011-2304-4

  84. Nilsson, S. and Holmgren, S., Cardiovascular control by purines, 5-hydroxytryptamine, and neuropeptides, Fish Physiology, vol. XX, Hoar, W.S., Randall, D.J. and Farrell, A.P., Eds., New York, Academic Press, 1992, pp.180–206.

  85. Taylor, E.W., Leite, C.A.C., and Levings, J.J., Central control of cardiorespiratory interactions in fish, Acta histochem., 2009, vol. 111(3), pp. 257–267. https://doi.org/10.1016/j.acthis.2008.11.006

  86. Stoyek, M.R., Croll, R.P., and Smith, F.M., Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio), J. Comp. Neurol., 2015, vol. 523(11), pp. 1683–1700. https://doi.org/10.1002/cne.23764

  87. Santer, R.M., Morphology and innervation of the fish heart, Adv. Anat. Embryol. Cell Biol., 1985, vol. 89, pp. 1–102. https://doi.org/10.1007/978-3-642-70135-1

  88. Sedmera, D., Reckova, M., de Almeida, A., Sedmerova, M., Biermann, M., Volejnik, J., Sarre, A., Raddatz, E., McCarthy, R.A., Gourdie, R.G., and Thompson, R.P., Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284(4),pp.  H1152eH1160. https://doi.org/10.1152/ajpheart.00870.2002

  89. Stoyek, M.R., Quinn, T.A., and Croll, R.P., Zebrafish heart as a model to study the integrative autonomic control of pacemaker function, Am. J. Physiol. Heart Circ. Physiol., 2016, vol. 311(3), pp. H676–H688. https://doi.org/10.1152/ajpheart.00330.2016

  90. Šolc, D., The heart and heart conducting system in the kingdom of animals: a comparative approach to its evolution, Exp. Clin. Cardiol., 2007, vol. 12(3), pp. 113–118.

  91. Donald, J.A., Vomachka, A.J., and Evans, D.H., Immunohistochemical localization of natriuretic peptides in the brains and hearts of the spiny dogfish Squalus acanthias and the Atlantic hagfish Myxine glutinosa, Cell Tiss. Res., 1992, vol. 270(3), pp. 535–545. https://doi.org/ 10.1007/BF00645056

  92. Burggren, W.W., Christoffels, V.M., Crossley, D.A., Enok, S., Farrell, A.P., Hedrick, M.S., Hicks, J.W., Jensen, B., Moorman, A.F.M., Mueller, C.A., Skovgaard, N., Taylor, E.W., and Wang, T., Comparative cardiovascular physiology: future trends, opportunities and challenges, Acta Physiol., 2014, vol. 210, pp. 257–276. https://doi.org/10.1111/apha.12170

  93. Hassinen, M., Haverinen, J., and Vornanen, M., Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, vol. 313(6), pp. R711–R722. https://doi.org/10.1152/ajpregu.00227.2017

  94. Baker, K., Warren, K.S., Yellen, G., and Fishman, M.C., Defective ‘pacemaker’ current (Ih) in a zebrafish mutant with a slow heart rate, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4554–4559. https://doi.org/10.1073/pnas.94.9.4554

  95. Jackson, H.A., Marshall, C.R., and Accili, A., The evolution and structural diversification of Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel genes, Physiol. Genomics, 2007, vol. 29, pp. 231–245. https://doi.org/10.1152/physiolgenomics.00142.2006

  96. Ota, K.G., Fujimoto, S., Oisi, Y., and Kuratani, S., Late development of hagfish vertebral elements, J. Exp. Zool., 2013, vol. 320(3), pp. 129–139. https://doi.org/10.1002/jez.b.22489

Download references

Funding

This study was implemented within State assignments to Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences (reg. no. АААА-А18-118021490093-4 and АААА-А18-118020790229-7) and supported by the Russian Foundation for Basic Research (projects no. 20-04-00037 and 20-44-920001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Е. E. Kolesnikova.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 2, pp. 103–123https://doi.org/10.31857/S0044452921020029.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, Е.E. Anatomical and Physiological Peculiarities of the Heart in Jawless and Jawed Fish. J Evol Biochem Phys 57, 185–207 (2021). https://doi.org/10.1134/S0022093021020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020022

Keywords:

Navigation