Skip to main content
Log in

Age-Dependent Generation of Epileptiform Activity in the 4-Aminopyridine Model with Slices of the Rat Entorhinal Cortex

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Children are more likely to develop epileptic seizures (ictal discharges lasting tens of seconds) than adults. A higher predisposition of the juvenile brain to the generation of epileptiform activity is thought to be due to a prevalence of inhibition over excitation at the early stage of brain development. However, the molecular and physiological mechanisms underlying these age-related differences are yet to be clarified. We compared the ictal activity induced by a convulsant 4-aminopyridine (4-AP) in the horizontal slices of the entorhinal cortex and hippocampus of 3- and 8-week-old Wistar rats. In 3-week-old rats, the ictal discharge was always preceded by a detectable preictal activity, as manifested in one or several 3–4-s GABA-glutamate events, whereas in 8-week-old rats, such events were typically absent or very rare (no more than one occasional short event). The ictal activity resistance to external exposures was also age-dependent. In 8-week-old rats, by contrast to 3-week-old animals, ictal discharge generation in the entorhinal cortex was blocked completely and replaced by 0.2–0.3 Hz interictal activity (simultaneous 1–3-s burst discharges) by a partial blockade of KCC2 cotransporter or Na+–K+-pump, as well as by low-frequency electric stimulation. Thus, our data indicate that ictal discharges in the immature (3-week-old) brain are more resistant to external exposures than in the brain of adult rats. Interictal and ictal epileptiform activities are antagonistic in 8-week-old animals. In contrast, the appearance of interictal activity interrupts the generation of ictal discharges completely. It can therefore be considered as one of the putative antiepileptic mechanisms in the mature rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cowan, L.D., The epidemiology of the epilepsies in children, Ment. Retard. Dev. Disabil. Res. Rev., 2002, vol. 8, pp. 171–181. https://doi.org/10.1002/mrdd.10035

  2. Studenikin, V.M., Shelkovsky, V.I., and Balkanskaya, S.V., Febrile seizures, Prakt. Ped., 2007, vol. 1, pp. 8–10.

  3. Hauser, W.A., Incidence and prevalence, Epilepsy: A Comprehensive Textbook, Engel, J. Jr. and Pedley, T.A., Eds., Lippincott Raven Publishers, Philadelphia, pp. 47–58, 1997. https://doi.org/10.1007/978-88-470-2903-3_81

  4. Plotkin, M.D., Snyder, E.Y., Hebert, S.C., and Delpire, E., Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain, J. Neurobiol., 1997, vol. 33(6), pp. 781–795. https://doi.org/10.1002/(sici)1097-4695(19971120)33:6<781::aid-neu6>3.0.co;2-5

  5. Wang, C., Shimizu-Okabe, C., Watanabe, K., Okabe, A., Matsuzaki, H., Ogawa, T., Mori, N., Fukuda, A., and Sato, K., Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain, Dev. Brain Res., 2002, vol. 139(1), pp. 59–66. https://doi.org/10.1016/s0165-3806(02)00536-9

  6. Dzhala, V.I., Talos, D.M., Sdrulla, D.A., Brumback, A.C., Mathews, G.C., Benke, T.A., Delpire, E., Jensen, F.E., and Staley, K.J., NKCC1 transporter facilitates seizures in the developing brain, Nat. Med., 2005, vol. 11(11), pp. 1205–1213. https://doi.org/10.1038/nm1301

  7. Khazipov, R., Khalilov, I., Tyzio, R., Morozova, E., Ben-Ari, Y., and Holmes, G.L., Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus, Eur. J. Neurosci., 2004, vol. 19(3), pp. 590–600. https://doi.org/10.1111/j.0953-816x.2003.03152.x

  8. Watanabe, M. and Fukuda, A., Development and regulation of chloride homeostasis in the central nervous system, Front. Cell Neurosci., 2015, vol. 9, p. 371. https://doi.org/10.3389/fncel.2015.00371

  9. Lei, S. and McBain, C.J., GABAB receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons, J. Physiol., 2003, vol. 15(2), 546, pp. 439–453. https://doi.org/10.1113/jphysiol.2002.034017

  10. Nurse, S. and Lacaille, J.C., Late maturation of GABA(B) synaptic transmission in area CA1 of the rat hippocampus, Neuropharmacol., 1999, vol. 38(11), 1733e42. https://doi.org/10.1016/s0028-3908(99)00122-7

  11. Scanziani, M., GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity, Neuron, 2000, vol. 25(3), pp. 673–681. https://doi.org/10.1016/S0896-6273(00)81069-7

  12. Sundaram, S.M., Safina, D., Ehrkamp, A., Faissner, A., Heumann, R., and Dietzel, I.D., Differential expression patterns of sodium potassium ATPase alpha and beta subunit isoforms in mouse brain during postnatal development, Neurochem. Int., 2019, vol. 128, pp. 163–174. https://doi.org/10.1016/j.neuint.2019.04.009

  13. Banerjee, B. and Chaudhury, S., Thyroidal regulation of different isoforms of NaKATPase in the primary cultures of neurons derived from fetal rat brain, Life Sci., 2002, vol. 71(14), pp. 1643–1654. https://doi.org/10.1016/s0024-3205(02)01856-8

  14. Amakhin, D.V., Ergina, J.L., Chizhov, A.V., and Zaitsev, A.V., Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex, Front. Cell Neurosci., 2016, vol. 10, p. 233. eCollection. https://doi.org/10.3389/fncel.2016.00233

  15. Yao, J.A. and Tseng, G.N., Modulation of 4-AP block of a mammalian A-type K channel clone by channel gating and membrane voltage, Biophys. J., 1994, vol. 67(1), pp. 130–142. https://doi.org/10.1016/S0006-3495(94)80462-X

  16. Choquet, D. and Korn, H., Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes, J. Gen. Physiol., 1992, vol. 99(2), pp. 217–240. https://doi.org/10.1085/jgp.99.2.217

  17. Octeau, J.C., Faas, G., Mody, I., and Khakh, B.S., Making, testing, and using potassium ion selective microelectrodes in tissue slices of adult brain, J. Vis. Exp., 2018, (135), 57511. https://doi.org/10.3791/57511

  18. Malyshev, A.Y., Roshchin, M.V., Smirnova, G.R., Dolgikh, D.A., Balaban, P.M., and Ostrovsky, M.A., Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light, Neurosci. Let., 2017, vol. 640, pp. 76–80. https://doi.org/10.1016/j.neulet.2017.01.026

  19. Yu, Y., Shu, Y., and McCormick, D.A., Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics, J. Neurosci., 2008, vol. 28(29), pp. 7260–7272. https://doi.org/10.1523/JNEUROSCI.1613-08.2008

  20. Tai, Y., Gallo, N.B., Wang, M., Yu, J.R., and Van Aelst, L., Axo-axonic innervation of neocortical pyramidal neurons by GABAergic chandelier cells requires ankyrin G-associated L1CAM, Neuron, 2019, vol. 102(2), pp. 358–372, e9. https://doi.org/10.1016/j.neuron.2019.02.009

  21. Ben-Ari, Y., Gaiarsa, J.L., Tyzio, R., and Khazipov, R., GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol. Rev., 2007, vol. 87(4), pp. 1215–1284. https://doi.org/10.1152/physrev.00017.2006

  22. Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R., and Rivera, C., Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy, J. Neurosci., 2007, vol. 27, pp. 9866–9873. https://doi.org/10.1523/JNEUROSCI.2761-07.2007

  23. Kaila, K., Ruusuvuori, E., Seja, P., Voipio, J., and Puskarjov, M., GABA actions and ionic plasticity in epilepsy, Curr. Opin. Neurobiol., 2014, vol. 26, pp. 34–41. https://doi.org/10.1016/j.conb.2013.11.004

  24. Chizhov, A.V., Zefirov, A.V., Amakhin, D.V., Smirnova, E.Y., and Zaitsev, A.V., Minimal model of interictal and ictal discharges “Epileptor-2”, PLoS Comput Biol., 2018, vol. 14(5), e1006186. https://doi.org/10.1371/journal.pcbi.1006186

  25. Smirnova, E.Y., Chizhov, A.V., and Zaitsev, A.V., Presynaptic GABAB receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats, Brain Stimul., 2020, vol. 13(5), pp. 1387–1395. https://doi.org/10.1016/j.brs.2020.07.013

  26. Swartzwelder, H.S., Lewis, D.V., Anderson, W.W., and Wilson, W.A., Seizure-like events in brain slices: suppression by interictal activity, Brain Res., 1987, vol. 410(2), pp. 362–366. https://doi.org/10.1016/0006-8993(87)90339-8

  27. Barbarosie, M. and Avoli, M., CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures, J. Neurosci., 1997, vol. 17(23), pp. 9308–9314. https://doi.org/10.1523/JNEUROSCI.17-23-09308.1997

  28. Berdichevsky, Y., Dzhala, V., Mail, M., and Staley, K.J., Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro, Neurobiol. Dis., 45(2):774-785. 2012. https://doi.org/10.1016/j.nbd.2011.11.001

  29. Jabès, A., Lavenex, P.B., Amaral, D.G., and Lavenexs, P., Postnatal development of the hippocampal formation: a stereological study in macaque monkeys, J. Comp. Neurol., 2011, vol. 519(6), pp. 1051–1070. https://doi.org/10.1002/cne.22549

  30. Magloire, V., Cornford, J., Lieb, A., Kullmann, D.M., and Pavlov, I., KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition, Nat. Commun., 2019, vol. 10(1), p. 1225. https://doi.org/10.1038/s41467-019-08933-4

  31. Puskarjov, M., Ahmad, F., Kaila, K., and Blaesse, P., Activity-dependent cleavage of the K–Cl cotransporter KCC2 mediated by calcium-activated protease calpain, J. Neurosci., 2019, vol. 32(33), pp. 11356–11364. https://doi.org/10.1523/JNEUROSCI.6265-11.2012

  32. Kahle, K.T., Merner, N.D., Friedel, P., Silayeva, L., Liang, B., Khanna, A., Shang, Y., Lachance-Touchette, P., Bourassa, C., Levert, A., Dion, P.A., Walcott, B., Spiegelman, D., Dionne-Laporte, A., Hodgkinson, A., Awadalla, P., Nikbakht, H., Majewski, J., Cossette, P., Deeb, T.Z., Moss, S.J., Medina, I., and Rouleau, G.A., Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy, EMBO Rep., 2014, vol. 15(7), pp. 766–774. https://doi.org/10.1523/JNEUROSCI.6265-11.2012

  33. Ellender, T.J., Raimondo, J.V., Irkle Lamsa, K.P., and Akerman, C.J., Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges, J. Neurosci., 2014, vol. 34, pp. 15208–15222. https://doi.org/10.1523/JNEUROSCI.1747-14.2014

  34. Nardou, R., Yamamoto, S., Chazal, G., Bhar, A., Ferrand, N., Dulac, O., Ben-Ari, Y., and Khalilov, I., Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital, Brain, 2011, vol. 134, pp. 987–1002. https://doi.org/10.1093/brain/awr041

  35. Toprani, S. and Durand, D.M., Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation, J. Physiol., 2013, vol. 591(22), 5765e90. https://doi.org/10.1113/jphysiol.2013.253757

  36. Kano, T., Inaba, Y., D’Antuono, M., Biagini, G., Levesque, M., and Avoli, M., Blockade of in vitro ictogenesis by low-frequency stimulation coincides with increased epileptiform response latency, J. Neurophysiol., 2015, vol. 114(1), 21e8. https://doi.org/10.1152/jn.00248.2015

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research, project number 19-315-60016.

Author information

Authors and Affiliations

Authors

Contributions

E.Yu. Smirnova: experimental design, data collection and processing, writing and editing the manuscript. D.S. Sinyak: data collection on the blockade of the Na+–K+-pump and KCC2 cotransporter in brain slices of 3-week-old rats. A.V. Chizhov and A.V. Zaitsev: data discussion, editing the manuscript.

Corresponding author

Correspondence to E. Yu. Smirnova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The experimental protocol met the requirements of the Ethics Committee at the Sechenov Institute of Evolutionary Physiology and Biochemistry (Russian Academy of Sciences) based on international recommendations of the European Communities Council Directive of 1986 (86/609/EEC).

This study did not involve human subjects as research objects.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 2, pp. 144–153https://doi.org/10.31857/S0044452921020078.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.Y., Sinyak, D.S., Chizhov, A.V. et al. Age-Dependent Generation of Epileptiform Activity in the 4-Aminopyridine Model with Slices of the Rat Entorhinal Cortex. J Evol Biochem Phys 57, 230–240 (2021). https://doi.org/10.1134/S0022093021020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020058

Keywords:

Navigation