Skip to main content
Log in

The Role of the C-terminal Intracellular Domain in Acid-Sensing Ion Channel 3 Functioning

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

An increase in the concentration of protons in the synaptic cleft during neurotransmitters release is considered as one of the possible ways for postsynaptic membrane sensitization. The main sensors of acidification are acid-sensing ion channels (ASICs). The ASIC3 localized on the membrane of a sensing neuron contributes greatly to the perception of pain and is considered as one of the promising targets for the development of novel therapeutic agents. Despite a high degree of homology between mammalian ASIC3 channels, there is a number of differences among their orthologs. The major difference between human and rat ASIC3 is that, at physiological pH 7.4, the human ASIC3 responds to a fast acidic stimulus with practically a solitary sustained transmembrane current, while its rat ortholog generates a transient current with far higher amplitude, which precedes the sustained current. In this study, we demonstrate that the C-terminal intracellular domain (CTD) has a regulatory function, and its modification significantly affects transient current generation in human and rat ASIC3. A shortening of the CTD by 20 amino acid residues leads to a dramatic increase in the transient current and attenuation of the sustained current, while CTD modification in hASIC3 leads to the generation of a well-defined transient current like rASIC3, as demonstrated in whole-cell experiments on heterologically expressed channels. Furthermore, the deletion of 20 amino acid residues in the CTD increases the current amplitude by an order of magnitude both in rASIC3 and hASIC3. The obtained results demonstrate a prominent role of CTD in the intracellular regulation of ASIC3 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Price, M.P., Gong, H., Parsons, M.G., Kundert, J.R., Reznikov, L.R., Bernardinelli, L., Chaloner, K., Buchanan, G.F., Wemmie, J.A., Richerson, G.B., Cassell, M.D., and Welsh, M.J., Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli, Genes Brain Behav., 2014, vol. 13, pp. 179–194. https://doi.org/10.1111/gbb.12108

  2. Wemmie, J.A., Askwith, C.C., Lamani, E., Cassell, M.D., Freeman, J.H., and Welsh, M.J., Acid- sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning, J. Neurosci., 2003, vol. 23, pp. 5496–5502. https://doi.org/10.1523/JNEUROSCI.23-13-05496.2003

  3. Alvarez de la Rosa, D., Zhang, P., Shao, D., White, F., and Canessa, C.M., Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system, Proc. Natl. Acad. Sci., 2002, vol. 99, pp. 2326–2331. https://doi.org/10.1073/pnas.042688199

  4. Zha, X.-M., Wemmie, J.A., Green, S.H., and Welsh, M.J., Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines, Proc. Natl. Acad. Sci., 2006, vol. 103, pp. 16556–16561. https://doi.org/10.1073/pnas.0608018103

  5. Liu, X., Liu, C., Ye, J., Zhang, S., Wang, K., and Su, R., Distribution of acid sensing ion channels in axonal growth cones and presynaptic membrane of cultured hippocampal neurons, Front. Cell Neurosci., 2020, vol. 14, pp. 205. https://doi.org/10.3389/fncel.2020.00205

  6. Urbano, F.J., Lino, N.G., Gonzalez-Inchauspe, C.M.F., Gonzalez, L.E., Colettis, N., Vattino, L.G., Wunsch, A.M., Wemmie, J.A., and Uchitel, O.D., Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice, Am. J. Physiol. Physiol., 2014, vol. 306, pp. C396–C406. https://doi.org/10.1152/ajpcell.00301.2013

  7. Cho, J.-H. and Askwith, C.C., Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice, J. Neurophysiol., 2008, vol. 99, pp. 426–441. https://doi.org/10.1152/jn.00940.2007

  8. Du, J., Reznikov, L.R., Price, M.P., Zha, X.-m., Lu, Y., Moninger, T.O., Wemmie, J.A., and Welsh, M.J., Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala, Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 8961–8966. https://doi.org/10.1073/pnas.1407018111

  9. Kreple, C.J., Lu, Y., Taugher, R.J., Schwager-Gutman, A.L., Du, J., Stump, M., Wang, Y., Ghobbeh, A., Fan, R., Cosme, C.V., Sowers, L.P., Welsh, M.J., Radley, J.J., LaLumiere, R.T., and Wemmie, J.A., Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity, Nat. Neurosci., 2014, vol. 17, pp. 1083–1091. https://doi.org/10.1038/nn.3750

  10. Giffard, R.G., Monyer, H., Christine, C.W., and Choi, D.W., Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures, Brain Res., 1990, vol. 506, pp. 339–342. https://doi.org/10.1016/0006-8993(90)91276-M

  11. Traynelis, S.F. and Cull-Candy, S.G., Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons, Nature, 1990, vol. 345, pp. 347–350. https://doi.org/10.1038/345347a0

  12. Tang, C.M., Dichter, M., and Morad, M., Modulation of the N-methyl-D-aspartate channel by extracellular H+, Proc. Natl. Acad. Sci., 1990, vol. 87, pp. 6445–6449. https://doi.org/10.1073/pnas.87.16.6445

  13. Lei, S., Orser, B.A., Thatcher, G.R.L., Reynolds, J.N., and MacDonald, J.F., Positive allosteric modulators of AMPA receptors reduce proton-induced receptor desensitization in rat hippocampal neurons, J. Neurophysiol., 2001, vol. 85, pp. 2030–2038. https://doi.org/10.1152/jn.2001.85.5.2030

  14. Buta, A., Maximyuk, O., Kovalskyy, D., Sukach, V., Vovk, M., Ievglevskyi, O., Isaeva, E., Isaev, D., Savotchenko, A., and Krishtal, O., Novel potent orthosteric antagonist of ASIC1a prevents NMDAR-dependent LTP induction, J. Med. Chem., 2015, vol. 58, pp. 4449–4461. https://doi.org/10.1021/jm5017329

  15. Liu, M.-G., Li, H.-S., Li, W.-G., Wu, Y.-J., Deng, S.-N., Huang, C., Maximyuk, O., Sukach, V., Krishtal, O., Zhu, M.X., and Xu, T.-L., Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms, Sci. Rep., 2016, vol. 6, p. 23350. https://doi.org/10.1038/srep23350

  16. Ma, C.-L., Sun, H., Yang, L., Wang, X.-T., Gao, S., Chen, X.-W., Ma, Z.-Y., Wang, G., Shi, Z., and Zheng, Q.-Y., Acid-sensing ion channel 1a modulates NMDA receptor function through targeting NR1/NR2A/NR2B triheteromeric receptors, Neuroscience, 2019, vol. 406, pp. 389–404. https://doi.org/10.1016/j.neuroscience.2019.03.044

  17. Mango, D., Braksator, E., Battaglia, G., Marcelli, S., Mercuri, N.B., Feligioni, M., Nicoletti, F., Bashir, Z.I., and Nistico, R., Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus, Pharmacol. Res., 2017, vol. 119, pp. 12–19. https://doi.org/10.1016/j.phrs.2017.01.028

  18. Gonzalez-Inchauspe, C., Urbano, F.J., Di Guilmi, M.N., and Uchitel, O.D., Acid-sensing ion channels activated by evoked released protons modulate synaptic transmission at the mouse calyx of held synapse, J. Neurosci., 2017, vol. 37, pp. 2589–2599. https://doi.org/10.1523/JNEUROSCI.2566-16.2017

  19. Blaustein, M., Wirth, S., Saldana, G., Piantanida, A.P., Bogetti, M.E., Martin, M.E., Colman-Lerner, A., and Uchitel, O.D., A new tool to sense pH changes at the neuromuscular junction synaptic cleft, Sci. Rep., 2020, vol. 10, p. 20480. https://doi.org/10.1038/s41598-020-77154-3

  20. Osmakov, D.I., Koshelev, S.G., Andreev, Y.A., and Kozlov, S.A., Endogenous isoquinoline alkaloids agonists of acid-sensing ion channel type 3, Front Mol. Neurosci., 2017, vol. 10, p. 282. https://doi.org/10.3389/FNMOL.2017.00282

  21. Osmakov, D.I., Koshelev, S.G., Andreev, Y.A., Dubinnyi, M.A., Kublitski, V.S., Efremov, R.G., Sobolevsky, A.I., and Kozlov, S.A., Proton-independent activation of acid-sensing ion channel 3 by an alkaloid, lindoldhamine, from Laurus nobilis, Br. J. Pharmacol., 2018, vol. 175, pp. 924–937. https://doi.org/10.1111/bph.14134

  22. Osmakov, D.I., Khasanov, T.A., Andreev, Y.A., Lyukmanova, E.N., and Kozlov, S.A., Animal, herb, and microbial toxins for structural and pharmacological study of acid-sensing ion channels, Front Pharmacol., 2020, vol. 11, p. 991. https://doi.org/10.3389/fphar.2020.00991

  23. Shteinikov, V., Potapieva, N., Gmiro, V., and Tikhonov, D., Hydrophobic amines and their guanidine analogues modulate activation and desensitization of ASIC3, Int. J. Mol. Sci., 2019, vol. 20, p. 1713. https://doi.org/10.3390/ijms20071713

  24. Highstein, S.M., Holstein, G.R, Mann, M.A., and Rabbitt, R.D., Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses, Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 5421–5426. https://doi.org/10.1073/pnas.1319561111

  25. Yoder, N., Yoshioka, C., and Gouaux, E., Gating mechanisms of acid-sensing ion channels, Nature, 2018, vol. 555, pp. 397–401. https://doi.org/10.1038/nature25782

  26. Wang, S., Peng, J., Ma, J., and Xu, J., Protein secondary structure prediction using deep convolutional neural fields, Sci. Rep., 2016, vol. 6, p. 18962. https://doi.org/10.1038/srep18962

  27. Klipp, R.C., Cullinan, M.M., and Bankston, J.R., Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin, J. Gen. Physiol., 2020, vol. 152(3), p. e201912471. https://doi.org/10.1085/jgp.201912471

  28. Osmakov, D.I., Koshelev, S.G., Ivanov, I.A., Andreev, Y.A., and Kozlov, S.A., Endogenous neuropeptide nocistatin is a direct agonist of acid-sensing ion channels (ASIC1, ASIC2 and ASIC3), Biomolecules, 2019, vol. 9 (9), p. 401. https://doi.org/10.3390/biom9090401

  29. Waldmann, R., Bassilana, F., de Weille, J., Champigny, G., Heurteaux, C., and Lazdunski, M., Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons, J. Biol. Chem., 1997, vol. 272, pp. 20975–20978. https://doi.org/10.1074/jbc.272.34.20975

  30. Grunder, S. and Pusch, M., Biophysical properties of acid-sensing ion channels (ASICs), Neuropharmacology, 2015, vol. 94, pp. 9–18. https://doi.org/10.1016/j.neuropharm.2014.12.016

  31. Price, M.P., Thompson, R.J., Eshcol, J.O., Wemmie, J.A., and Benson, C.J., Stomatin modulates gating of acid-sensing ion channels, J. Biol. Chem., 2004, vol. 279, pp. 53886–53891. https://doi.org/10.1074/jbc.M407708200

  32. Goodman, M.B., Ernstrom, G.G., Chelur, D.S., O’Hagan, R., Yao, C.A., and Chalfie, M., MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation, Nature, 2002, vol. 415, pp. 1039–1042. https://doi.org/10.1038/4151039a

Download references

ACKNOWLEDGMENTS

The authors are grateful to Sylvie Diochot (Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France) for providing the PCi plasmid containing the rat ASIC3 cDNA.

Author information

Authors and Affiliations

Authors

Contributions

Experiment design (D.I.O., Yu.V.K., S.A.K.); biochemical experiments and obtaining a recombinant peptide (E.E.M.); molecular cloning and creating mutant constructs (Yu.V.K., Ya.A.A., K.I.L.); electrophysiological studies on oocytes (D.I.O., K.I.L.); project supervision (S.A.K.); data analysis and manuscript writing (D.I.O., Yu.V.K., Ya.A.A., S.A.K.). All the authors have read and agreed with the published version of the manuscript.

Corresponding author

Correspondence to S. A. Kozlov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no evident or potential conflict of interest related with the publication of this work.

Additional information

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 616–628https://doi.org/10.31857/S0869813921040129.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmakov, D.I., Korolkova, Y.V., Lubova, K.I. et al. The Role of the C-terminal Intracellular Domain in Acid-Sensing Ion Channel 3 Functioning. J Evol Biochem Phys 57, 413–423 (2021). https://doi.org/10.1134/S0022093021020204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020204

Keywords:

Navigation