Skip to main content
Log in

Investigation of 6-armchair graphene nanoribbon tunnel FETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A simulation-based study of an n-type six-dimer-line armchair graphene nanoribbon (6-AGNR) tunnel field-effect transistor with asymmetric reservoir doping density is carried out. Tunnel field-effect transistor (TFET) structures are proposed based on a detailed investigation of the device behavior for different applied voltages, channel lengths, temperatures, insulator thicknesses, dielectric constants, and source impurity molar fractions. By suppressing the tunneling transmission in the off-state, the channel length of the device using HfO2 can be scaled down to 5 nm without increasing the leakage current. When using a supply voltage of 0.4 V, the ION/IOFF ratio reaches a high value of 3.6 × 1010 for the device with a 5-nm channel. Besides, a subthreshold swing (SS) of 3.8 mV/dec is measured for the same GNR-TFET. The high-performance 10-nm-channel device, when supplied with 0.6 V, exhibits a boosted ION value of up to 4.3 × 103 µA/µm, with SS, gm, and Dini values of 28 mV/dec, 11 µS, and 11 fs, respectively. Nevertheless, conventional GNR-TFETs with various channel lengths exhibit rather outstanding characteristics. Such 6-AGNR TFETs display promising functionality for application in future digital and analog integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8

Similar content being viewed by others

Reference

  1. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE (2010). https://doi.org/10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  2. Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P.M., Banerjee, K.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature (2015). https://doi.org/10.1038/nature15387

    Article  Google Scholar 

  3. Ilatikhameneh, H., Ameen, T., Novakovic, B., Tan, Y., Klimeck, G., Rahman, R.: Saving Moore’s law down to 1 nm channels with anisotropic effective mass. Sci. Rep. (2016). https://doi.org/10.1038/srep31501

    Article  Google Scholar 

  4. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  5. Nirschl, Th., Henzler, St., Fischer, J., Fulde, M., Bargagli-Stoffi, A., Sterkel, M., Sedlmeir, J., Weber, C., Heinrich, R., Schaper, U., Einfield, J., Neubert, R., Feldmann, U., Stahrenberg, K., Ruderer, E., Georgakos, G., Huber, A., Kakoschke, R., Hansch, W., Schmitt-Landsiedel, D.: Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron (2006). https://doi.org/10.1016/j.sse.2005.10.045

    Article  Google Scholar 

  6. Wang, P.-F., Hilsenbeck, K., Nirschl, Th., Oswald, M., Stepper, Ch., Weis, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power application. Solid-State Electron (2004). https://doi.org/10.1016/j.sse.2004.04.006

    Article  Google Scholar 

  7. Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats2016.52

    Article  Google Scholar 

  8. Schwierz, F.: Graphene transistors: status, prospects, and problems. Proc. IEEE (2013). https://doi.org/10.1109/JPROC.2013.2257633

    Article  Google Scholar 

  9. Gholipour, M., Chen, Y.-Y., Sangai, A., Masoumi, N., Chen, D.: Analytical SPICE-compatible model of Schottky-barrier-type GNRFETs with performance analysis. IEEE Trans. Very Large Scale Integr. VLSI Syst. (2016). https://doi.org/10.1109/TVLSI.2015.2406734

    Article  Google Scholar 

  10. Chilstedt, S., Dong, C., Chen, D.: Carbon nanomaterials transistors and circuits. In: Transistors: Types, Materials and Applications. Nova Science Publication, New York (2010)

  11. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B (1996). https://doi.org/10.1103/PhysRevB.54.17954

    Article  Google Scholar 

  12. Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. (2006). https://doi.org/10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  13. Wagner, P., Ewels, C.P., Adizian, J.-J., Magaud, L., Pochet, P., Roche, S., Lopez-Bezanilla, A., Ivanovskaya, V.V., Yaya, A., Rayson, M., Briddon, P., Humbert, B.: Band gap engineering via edge-functionalization of graphene nanoribbons. J. Phys. Chem. (2013). https://doi.org/10.1021/jp408695c

    Article  Google Scholar 

  14. Zhang, Q., Fang, T., Xing, H., Seabaugh, A., Jena, D.: Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. (2008). https://doi.org/10.1109/LED.2008.2005650

    Article  Google Scholar 

  15. Chin, S.-K., Seah, D., Lam, K.-T., Samudra, G.S., Liang, G.: Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Trans. Electron Devices (2010). https://doi.org/10.1109/TED.2010.2065809

    Article  Google Scholar 

  16. Kim, S.G., Luisier, M., Boykin, T.B., Klimeck, G.: Computational study of heterojunction graphene nanoribbon tunneling transistors with p-d orbital tight-binding method. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4884199

    Article  Google Scholar 

  17. Mech, B.C., Koley, K., Kumar, J.-J.: The understanding of SiNR and GNR TFETs for analog and RF application with variation of drain-doping molar fraction. IEEE Trans. Electron Devices (2018). https://doi.org/10.1109/TED.2018.2867443

    Article  Google Scholar 

  18. Suhendi, E., Hasanah, L., Rusdiana, D., Noor, F.A., Kurniasih, N., Khairurrijal: and, Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger’s equation. J. Semicond. (2019). https://doi.org/10.1088/1674-4926/40/6/062002

    Article  Google Scholar 

  19. Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices. Solid-State Electron. (2007). https://doi.org/10.1016/j.sse.2007.02.001

    Article  Google Scholar 

  20. Fiori, G., Iannaccone, G., Klimeck, G.: A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron Devices (2006). https://doi.org/10.1109/TED.2006.878018

    Article  Google Scholar 

  21. Fiori, G., Iannaccone, G.: Performance analysis of graphene bilayer transistors through tight-binding simulations. In: Proceedings of the 13th International Workshop Computational Electronics (IWCE), Beijing, China, pp. 1–4 (2009). https://doi.org/10.1109/IWCE.2009.5091138

  22. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. (2000). https://doi.org/10.1006/spmi.2000.0920

    Article  Google Scholar 

  23. Grassi, R., Poli, S., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs. Solid-State Electron. (2009). https://doi.org/10.1016/j.sse.2008.07.015

    Article  Google Scholar 

  24. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger–Poisson equations in quantum structures. J. Appl. Phys. (1997). https://doi.org/10.1063/1.365396

    Article  Google Scholar 

  25. Conzatti, F., Pala, M.G., Esseni, D., Bano, E., Selmi, L.: Strain-induced performance improvements in InAs nanowire tunnel FETs. IEEE Trans. Electron Devices (2012). https://doi.org/10.1109/TED.2012.2200253

    Article  Google Scholar 

  26. Yan, R.-H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices (1992). https://doi.org/10.1109/16.141237

    Article  Google Scholar 

  27. Appenzeller, J., Knoch, J., Bjoerk, M., Riel, H., Schmid, H.: Toward nanowire electronics. IEEE Trans. Electron Devices (2008). https://doi.org/10.1109/TED.2008.2008011

    Article  Google Scholar 

  28. Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. Phys. Status Solid (a) (2008). https://doi.org/10.1002/pssa.200723528

    Article  Google Scholar 

  29. Singh, N.K., Sahoo, M.: Investigation on the effect of gate dielectric and other device parameters on digital performance of silicene nanoribbon tunnel FET. IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.2992016

    Article  Google Scholar 

  30. Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T., Mantl, S.: Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid-State Electron (2009). https://doi.org/10.1016/j.sse.2009.05.009

    Article  Google Scholar 

  31. Lv, Y., Qin, W., Huang, Q., Chang, S., Wang, H., He, J.: Graphene nanoribbon tunnel field-effect transistor via segmented edge saturation. IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2691360

    Article  Google Scholar 

  32. Zhang, W., Ragab, T., Basaran, C.: Electrostatic doping-based all GNR tunnel FET: an energy-efficient design for power electronics. IEEE Trans. Electron Devices. (2019). https://doi.org/10.1109/TED.2019.2896315

    Article  Google Scholar 

  33. Shirazi, S.G., Karimi, G.R., Mirzakuchakimid, S.: GAA CNT TFETs structural engineering: a higher ON current, lower ambipolarity. IEEE Trans. Electron Devices (2019). https://doi.org/10.1109/TED.2019.2912950

    Article  Google Scholar 

  34. Luong, G.V., Strangio, S., Tiedemannn, A., Lenk, S., Trellenkamp, S., Bourdelle, K.K., Zhao, Q.T., Mantl, S.: Experimental demonstration of strained Si nanowire GAA n-TFETs and inverter operation with complementary TFET logic at low supply voltages. Solid-State Electron. (2016). https://doi.org/10.1016/j.sse.2015.08.020

    Article  Google Scholar 

  35. Hwang, W.S., Zhao, P., Kim, S.G., Yan, R., Klimeck, G., Seabaugh, A., Fullerton-Shirey, S.K., Xing, H.G., Jena, D.: Room-temperature graphene-nanoribbon tunneling field-effect transistors. npj 2D Mater. Appl. (2019). https://doi.org/10.1038/s41699-019-0127-1

    Article  Google Scholar 

  36. International Technology Roadmap for Semiconductor, Accessed on, 20 Dec 2016, [Online]. http://www.itrs2.net/

Download references

Acknowledgements

The authors acknowledge the funding support of Babol Noshirvani University of Technology through grant program no. BNUT/389023/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Gholipour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghanejad Ahmadchally, A., Gholipour, M. Investigation of 6-armchair graphene nanoribbon tunnel FETs. J Comput Electron 20, 1114–1124 (2021). https://doi.org/10.1007/s10825-021-01709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01709-4

Keywords

Navigation