Skip to main content
Log in

Simultaneous Colorimetric Sensing of Anion (I) and Cation (Fe2+) by Protein Functionalized Silver Nanoparticles in Real Samples

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Spherical shaped silver nanoparticles with the average size of 68.7 nm were synthesized from eco-friendly and environmentally safe approach using serum carrier protein 'fetuin-A' as stabilizing agent (named as F-AgNPs). Protein capping provided excellent stability at variable temperature (~ 25–85 °C), pH (~ 4–8), salt concentrations (~ 1.5 M) and storage period (≥ 3 months). Synthesized F-AgNPs were extensively characterized using UV–visible, Fourier transform infrared, circular dichroism and intrinsic fluorescence spectroscopy, dynamic light scattering, atomic force and scanning electron microscopy, energy dispersive spectroscopic measurements. F-AgNPs were proved as highly sensitive and selective colorimetric dual sensor for iodide (I) and ferrous (Fe2+) ions with significant linearity (1–8 and 1–10 µM, respectively), detection limits (LOD = 0.5 and 0.47 µM, respectively) and percent recoveries in real environmental (tap water) and biological (human plasma and urine) samples with adequate test performance. Cumulatively, obtained results revealed that this simple and biocompatible nanosensor has great potential for applications not only in analytical chemistry but also for biological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Nayal, A. Kumar, R. K. Chhatra, and P. S. Pandey (2014). RSC Adv. 4, 39866–39869.

    Article  CAS  Google Scholar 

  2. S. Bothra, R. Kumar, R. K. Pati, A. Kuwar, H. J. Choi, and S. K. Sahoo (2015). Spectrochim. Acta A 149, 122–126.

    Article  CAS  Google Scholar 

  3. A. Contino, G. Maccarrone, M. Zimbone, M. Seggio, P. Musumeci, A. Giuffrida, and L. Calcagno (2017). Colloids Surf. A 529, 128–136.

    Article  CAS  Google Scholar 

  4. T. Alizadeh and F. Zargr (2020). Mater. Chem. Phys. 240, e122118.

    Article  CAS  Google Scholar 

  5. G. R. You, G. J. Park, S. A. Lee, K. Y. Ryu, and C. Kim (2015). Sens. Actuators B 215, 188–195.

    Article  CAS  Google Scholar 

  6. S. A. Kumar, N. Thakur, H. J. Parab, S. P. Pandey, R. N. Shinde, A. K. Pandey, S. D. Kumar, and A. V. R. Reddy (2014). Anal. Chim. Acta 851, 87–94.

    Article  CAS  PubMed  Google Scholar 

  7. M. May and O. S. Oluwafemi (2016). Int. J. Electrochem. Sci. 11, 8096–8108.

    Article  CAS  Google Scholar 

  8. L. Chen, W. Lu, X. Wang, and L. Chen (2013). Sens. Actuators B 182, 482–488.

    Article  CAS  Google Scholar 

  9. M. Maruthupandi, M. Chandhru, S. K. Rani, and N. Vasimalai (2019). ACS Omega 4, 11372–11379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Basiri, A. Mehdinia, and A. Jabbari (2018). Colloids Surf. A 545, 138–146.

    Article  CAS  Google Scholar 

  11. A. Niaz, A. Bibi, M. I. Zaman, M. Khan, and A. Rahim (2018). J. Mol. Liq. 249, 1047–1051.

    Article  CAS  Google Scholar 

  12. S. Li, Z. Peng, and R. M. Leblanc (2015). Anal. Chem. 87, 6455–6459.

    Article  CAS  PubMed  Google Scholar 

  13. K. Ranoszek-Soliwoda, E. Czechowska, E. Tomaszewska, G. Celichowski, T. Kowalczyk, T. Sakowicz, J. Szemraj, and J. Grobelny (2017). Colloids Surf. B 159, 533–539.

    Article  CAS  Google Scholar 

  14. N. Jain, A. Bhargava, M. Rathi, R. V. Dilip, and J. Panwar (2015). PLoS ONE 10, e0134337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. C. L. Udeh (2017). Int. J. Biomed. Mater. Res. 5, 72–77.

    Google Scholar 

  16. B. Denecke, S. Gräber, C. Schäfer, A. Heiss, M. Wöltje, and W. Jahnen-Dechent (2003). Biochem. J. 376, 135–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. S. Komsa-Penkova, G. M. Golemanov, Z. V. Radionova, P. T. Tonchev, S. D. Iliev, and V. V. Penkov (2017). Int. J. Biomed. Res. 10, 90–97.

    Google Scholar 

  18. S. Cartellieri, O. Hamer, H. Helmholz, and B. Niemeyer (2002). Biotechnol. Appl. Biochem. 35, 83–89.

    Article  CAS  PubMed  Google Scholar 

  19. K. Kuwamoto, Y. Takeda, A. Shirai, T. Nakagawa, S. Takeishi, S. Ihara, Y. Miyamoto, S. Shinzaki, J. H. Ko, and E. Miyoshi (2010). Mol. Med. Rep. 3, 651–656.

    CAS  PubMed  Google Scholar 

  20. I. Munir, S. Ajmal, M. R. Shah, A. Ahmad, A. Hameed, and S. A. Ali (2017). Int. J. Biol. Macromol. 101, 131–145.

    Article  CAS  PubMed  Google Scholar 

  21. A. Gebregeorgis, C. Bhan, O. Wilson, and D. Raghavan (2013). J. Colloid. Interface Sci. 389, 31–41.

    Article  CAS  PubMed  Google Scholar 

  22. A. Mishra, N. K. Kaushik, M. Sardar, and D. Sahal (2013). Colloids Surf. B 111, 713–718.

    Article  CAS  Google Scholar 

  23. L. Q. Chen, L. Fang, J. Ling, C. Z. Ding, B. Kang, and C. Z. Huang (2015). Chem. Res. Toxicol. 28, 501–509.

    Article  CAS  PubMed  Google Scholar 

  24. A. Siddiqui, H. Anwar, S. W. Ahmed, S. Naqvi, M. R. Shah, A. Ahmed, and S. A. Ali (2020). Spectrochim. Acta A 225, e117489.

    Article  CAS  Google Scholar 

  25. S. Naqvi, H. Anwer, S. W. Ahmed, A. Siddiqui, M. R. Shah, S. Khaliq, A. Ahmed, and S. A. Ali (2020). Spectrochim. Acta A 229, e118002.

    Article  CAS  Google Scholar 

  26. S. W. Ahmed, H. Anwer, A. Siddiqui, M. R. Shah, and S. A. Ali (2018). Sens. Actuators B 256, 429–439.

    Article  CAS  Google Scholar 

  27. V. Prabhawathi, P. M. Sivakumar, and M. Doble (2012). Ind. Eng. Chem. Res. 51, 5230–5239.

    Article  CAS  Google Scholar 

  28. J. Helmlinger, C. Sengstock, C. Groß-Heitfeld, C. Mayer, T. A. Schildhauer, M. Köller, and M. Epple (2016). RSC Adv. 6, 18490–18501.

    Article  CAS  Google Scholar 

  29. E. Ugwoke, S. O. Aisida, A. A. Mirbahar, M. Arshad, I. Ahmad, T. K. Zhao, and F. I. Ezema (2020). Surf. Interfaces 18, e100419.

    Article  CAS  Google Scholar 

  30. J. Liu, M. J. Chang, X. C. Gou, Z. G. Xu, and H. L. Zhang (2012). Colloids Surf. A 404, 112–118.

    Article  CAS  Google Scholar 

  31. Y. K. Mohanta, S. K. Panda, R. Jayabalan, N. Sharma, A. K. Bastia, and T. K. Mohanta (2017). Front. Mol. Biosci. 4, e14.

    Article  CAS  Google Scholar 

  32. E. Arshadi, S. Sedaghat, and O. Moradi (2018). Asian J. Green Chem. 2, 41–50.

    Google Scholar 

  33. P. Phanjom and G. Ahmed (2017). Adv. Nat. Sci. Nanosci. 8, e045016.

    Google Scholar 

  34. I. Siddiqui and Q. Husain (2019). Colloids Surf. B 173, 733–741.

    Article  CAS  Google Scholar 

  35. S. Laera, G. Ceccone, F. Rossi, D. Gilliland, R. Hussain, G. Siligardi, and L. Calzolai (2011). Nano Lett. 11, 4480–4484.

    Article  CAS  PubMed  Google Scholar 

  36. S. Gautam, P. Dubey, and M. N. Gupta (2013). Colloids Surf. B 102, 879–883.

    Article  CAS  Google Scholar 

  37. D. Joshi and R. K. Soni (2014). Appl. Phys. A 116, 635–641.

    Article  CAS  Google Scholar 

  38. C. Basset, O. Averseng, P. J. Ferron, N. Richaud, A. Hagège, O. Pible, and C. Vidaud (2013). Chem. Res. Toxicol. 26, 645–653.

    Article  CAS  PubMed  Google Scholar 

  39. A. Shrivastava and V. B. Gupta (2011). Chron. Young Sci. 2, e1.

    Article  Google Scholar 

  40. H. Cunha-Silva and M. J. Arcos-Martinez (2019). Talanta 199, 262–269.

    Article  CAS  PubMed  Google Scholar 

  41. R. Dai, X. Wang, Z. Wang, S. Mu, J. Liao, Y. Wen, J. Lv, K. Huang, and X. Xiong (2019). Microchem. J. 146, 592–599.

    Article  CAS  Google Scholar 

  42. B. Ma, F. Zeng, F. Zheng, and S. Wu (2011). Chem. Eur. J. 17, 14844–14850.

    Article  CAS  PubMed  Google Scholar 

  43. J. Zhang, Y. Li, and S. Han (2019). Microchem. J. 147, 1141–1146.

    Article  CAS  Google Scholar 

  44. A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, and W. Qin (2016). Sens. Actuators B 237, 408–415.

    Article  CAS  Google Scholar 

  45. K. Zheng, C. Lai, L. He, and F. Li (2010). Sci. China Chem. 53, 1398–1405.

    Article  CAS  Google Scholar 

  46. A. Samadi-Maybodi, V. Rezaei, and S. Rastegarzadeh (2015). Spectrochim. Acta A 136, 832–837.

    Article  CAS  Google Scholar 

  47. N. Scheers, T. Andlid, M. Alminger, and A. S. Sandberg (2010). Electroanalysis 22, 1090–1096.

    Article  CAS  Google Scholar 

  48. S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu, K. Dhara, and P. Chattopadhyay (2012). Analyst 137, 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  49. P. G. Mahajan, D. P. Bhopate, A. A. Kamble, D. K. Dalavi, G. B. Kolekar, and S. R. Patil (2015). Anal. Methods 7, 7889–7898.

    Article  CAS  Google Scholar 

  50. P. Vasileva, B. Donkova, I. Karadjova, and C. Dushkin (2011). Colloids Surf. A 382, 203–210.

    Article  CAS  Google Scholar 

  51. G. L. Wang, X. Y. Zhu, Y. M. Dong, H. J. Jiao, X. M. Wu, and Z. J. Li (2013). Talanta 107, 146–153.

    Article  CAS  PubMed  Google Scholar 

  52. X. Gao, Y. Lu, S. He, X. Li, and W. Chen (2015). Anal. Chim. Acta 879, 118–125.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The indirect financial support from the Higher Education Commission (HEC) of Pakistan to SAA (NRPU/R&D/HEC 20-3891) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abid Ali.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10876_2021_2074_MOESM1_ESM.pptx

Supplementary file1 (PPTX 818 kb). Fig. S1. Stability profile of F-AgNPs. (a) monitoring the effect of heat after 15 min incubation at various temperatures (25–100 ºC), (b) effect of variable pH 2–13, (c) effect of salt (NaCl) concentrations (0.25, 0.5, 1, 1.5, 2 M). (d) monitoring the storage stability at 4 °C and (e) at room temperature (28 ± 2 ºC). Fig. S2. Calibration curves prepared for protein estimation and calculation of loading capacity, using standard protein BSA (blue) and fetuin-A (red) itself because of heavy posttranslational modifications. Inset: 8% Native PAGE analysis of the pure fetuin-A and F-AgNPs. BSA is also used as control. Fig. S3. Effect of different ions (100 μM) on the absorption intensity of F-AgNPs. See "Experimental" section for details. Fig. S4. Interference assay of the competing metal ions. Effect of interfering ions on F-AgNPs for I detection, change in SPR peak alone and upon addition of equimolar concentrations of other interfering metal ions and I- with respect to F-AgNPs + I. Fig. S5. Interference assay of the competing ions. Effect of interfering ions on F-AgNPs for Fe2+ detection. Change in SPR peak alone and upon addition of equimolar concentrations of other interfering ions and Fe2+ with respect to F-AgNPs + Fe2+. Fig. S6. Application of F-AgNPs as a sensor in real samples. UV–vis spectral changes in SPR peak of F-AgNPs + I measured in tap water (a), human urine sample (b) and blood plasma (c). Fig. S7. Application of F-AgNPs as a sensor in real samples. UV–vis spectral changes in SPR peak of F-AgNPs + Fe2+ measured in tap water (a), human urine sample (b) and blood plasma (c).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, H.S., Raja, R., Ahmed, S.W. et al. Simultaneous Colorimetric Sensing of Anion (I) and Cation (Fe2+) by Protein Functionalized Silver Nanoparticles in Real Samples. J Clust Sci 33, 1501–1514 (2022). https://doi.org/10.1007/s10876-021-02074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02074-9

Keywords

Navigation