Skip to main content
Log in

The effect of Fe impurity on electronic and optical properties of graphene-like InAs: a DFT-based study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The first-principles calculations have been applied to investigate the impact of Fe impurity on the electronic, magnetic, and optical properties of graphene-like InAs and compare the results. The calculations have been accomplished through the full-potential augmented plane wave technique in the density functional theory framework using WIEN2k computational software. The band structures, density of states, and magnetic moment have been calculated. Since the presence of Fe causes magnetic effects such as spin–orbit interaction and electronic treatment variations, substituting In by Fe changes the non-magnetic InAs nanosheets semiconductor to a metalloid with the magnetic moment of about 5 Bohr magneton. Moreover, both real and imaginary diagrams of the dielectric function, loss function, optical conductivity, refraction index, and extinction coefficients have been discussed in the pure and impure cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. M I Ziane, Z Bensaad, B Labdelli and H Bennacer Sensors & Transducers. 27 374 (2014)

  2. N Bouarissa and R Bachiri Phys. B. 322 193 (2002)

  3. T Suzuki nAppl. Phys. Lett 107 213105 (2015)

  4. I Ahmad, S A Khan, M Idrees, M Haneef, I Shahid, H U Din, S A Khan and B Physica B. 545 113 (2018)

  5. D Muoi, N N Hieu, H T Phung, H V Phuc, B Amin, B D Hoi, N V Hieu, L C Nhan, C V Nguyen, P T T Le Chem. Phys. 519 69 73 (2019).

  6. A H C Neto and K Novoselov Rep. Prog. Phys 74 1 (2011)

  7. A Kara, H Enriquez and et al. Surf. Sci. Rep. 67 1 (2012)

  8. C Tusche and et al. Phys. Rev. Lett. 99 026102 (2007)

  9. C L Freeman and et al. Rev. Lett. 96 066102 (2006)

  10. H Sahin, S Cahangirov, M Topsakal, E Bekaroglu, E Akturk, R T Senger and S Ciraci Phys. Rev. B. 80 155453 (2009)

  11. S Wang J. Phys. Soc. Jpn. 79 064602 (2010)

  12. L I Alexander Russ. Chem. Rev 81 571 (2012)

  13. X Y Feng, Z Wang, C W Zhang, P J Wang Phys. E: Low Dimens. Syst. Nanostruct 54 144 (2013)

  14. G Mukhopadhyay, H Behera World J. Eng 10 39 (2013)

  15. S S Lin J. Phys. Chem. C 116 3951 (2012)

  16. N S Eliseeva, A A Kuzubov, S G Ovchinnikov, M V Serzhantova, F N Tomilin, A S Fedorov, JETP Lett 95 555 (2012)

  17. X Lin, S Lin, Y Xu, A A Hakro, T Hasan, B Zhang, B Yu, J Luo, E Li, H Chen J. Mater. Chem. C 1 2131 (2013)

  18. L Sohrabi, A Boochani, S A Sebt and M Elahi Eur. Phys. J. Plus 133 117 (2018)

  19. C Yu, J Zhang, W Tian, X Fan, Y Yao. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.5b03007

  20. V. Guerra, C. Wan, T. McNally. (2019). https://doi.org/10.1021/jp0607014

  21. H.L. Nguyen, Z. Hanif, S.A. Park, B.G. Choi, T.H. Tran, D.S. Hwang, et al. (2018). https://doi.org/10.3390/polym 10050 501

  22. K. Wenelska, K. Maslana, E. Mijowska. (2018). https://doi.org/10.1039/C&RA01527A

  23. YK. Shin, WS. Lee, MJ. Yoo, ES. Kim. (2013). https://doi.org/10.1016/j.ceramint.2012.10.137

  24. R. Moradi, M. Shariaty-Niassar, N. Pourkhalili, M. Mehrizade, H. Niknafas. (2018). https://doi.org/10.12989/MWT.2018.9.4.221

  25. A.R. Kamble, C.M. Patel, Z.V.P. Murthy. (2018). https://doi.org/10.1080/01496395.2018.1496118

  26. P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun. 59 399 (1990)

  27. K Schwarz, P Blaha Comput. Mater. Sci. 28 259 (2003)

  28. Z Cui, C LCU, B Yang, J.Shen and et al. polymer 42 10095 (2001)

  29. R Okutsu, S Ando and M U eda Chem. Mater 20 4017 (2008)

  30. A Nebioglu, J A Leon and I V Khudyakov Ind. Eng. Chem. Res. 47 2155 (2008)

  31. S D Hart, G R Maskaly, ranTemelku and p B H prideaux et al. Science. 296 510 (2002)

  32. J A Dobrowolski and F Ho Appl.Opt. 21 288 (1982)

  33. E Yablonovitch Science 289 557 (2000)

  34. L A Hornak polymers for light wave and Integrated Optics Technology and Applications, (Marcel Dekker: New York) (1992)

  35. A H Kitai Solid state Luminescence, (Chapman Hall. London) (1993)

  36. H H Li J. Phys. Chem. Ref. Data. 9 561 (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Sohrabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, L., Boochani, A. & Taghavi, A. The effect of Fe impurity on electronic and optical properties of graphene-like InAs: a DFT-based study. Indian J Phys 96, 1705–1714 (2022). https://doi.org/10.1007/s12648-021-02107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02107-z

Keywords

Navigation