Skip to main content
Log in

Control of buoyant flow and heat dissipation in a porous annular chamber using a thin baffle

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper reports the numerical simulations on buoyant thermal transfer inside the finite porous cylindrical annular region with a thin circular baffle attached to inner cylinder. The main objective of this investigation is to provide a detailed impact of baffle on flow and heat transport rates due to the direct relevance of this problem to the design of heat exchangers. The side walls of annular enclosure are maintained at uniform, but different temperatures, while the top and bottom walls are insulated. The Brinkman-extended Darcy model is adopted for the momentum equations, and simulations of the governing PDEs are performed using the ADI and SLOR algorithms. The predictions from the present simulations detected that the size and position of baffle has predominant impact on buoyant flow and thermal transport characteristics. It has been detected that the thermal dissipation rates could be enhanced by positioning the baffle near the upper boundary, while increasing the baffle length leads to the reduction of thermal transport. The size and location of baffle emerges out as an important quantity in regulating the global thermal transfer through modifying the flow regimes in the annular geometry. Interestingly, the magnitude of flow circulation enhances with an increase in Rayleigh and Darcy numbers for any baffle length and position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Aspect ratio

cp :

Specific heat at constant pressure

D:

Width of the annulus (m)

Da:

Darcy number

g:

Acceleration due to gravity (m/s2)

H:

Height of the annulus (m)

h:

Dimensional location of baffle (m)

K:

Permeability of the porous medium (m2)

k:

Thermal conductivity (W/(m K))

l :

Dimensional length of baffle (m)

L:

Dimensionless location of the baffle

\(\overline{Nu}\) :

Average Nusselt number

p:

Fluid pressure (Pa)

Pr:

Prandtl number

Ra:

Thermal Rayleigh number

RaD :

Darcy-Rayleigh number \(\left( {Ra_{D} = \frac{{gK\beta_{T} (\theta_{h} - \theta_{c} )D^{2} }}{\upsilon k\alpha }} \right)\)

T:

Dimensionless temperature

t*:

Dimensional time (s)

t:

Dimensionless time

(ri, ro):

Radius of inner and outer cylinders (m)

(r, z):

Dimensional radial and axial co-ordinates (m)

(R, Z):

Dimensionless radial and axial co-ordinates

(u, w):

Dimensional velocity components in (r, z) directions (m/s)

(U, W):

Dimensionless velocity components in (R, Z) directions

α:

Thermal diffusivity (m2/s)

β:

Thermal expansion coefficient (1/K)

ε:

Dimensionless length of baffle

ζ:

Dimensionless vorticity

θ:

Dimensional temperature (K)

λ:

Radius ratio

υ:

Kinematic viscosity (m2/s)

ρ:

Fluid density (kg/m3)

ϕ:

Porosity of the porous medium

ψ:

Dimensionless stream function

References

  1. G de Vahl Davis, RW Thomas, Physics of Fluids. Supplement II, 198 (1969)

  2. M Venkatachalappa, M Sankar and A A Natarajan Acta Mechanica. 147 173 (2001)

    Article  Google Scholar 

  3. F Mebarek-Oudina Eng. Sci. Technol. Int. J. 20 1324 (2017)

    Google Scholar 

  4. M Sankar, M Venkatachalappa and Y Do Int. J Heat Fluid Flow. 32 402 (2011)

    Article  Google Scholar 

  5. M Afrand, D Toghraie, A Karimipour and S J Wongwises J. Magn. Magn. Mater. 430 22 (2017)

    Article  ADS  Google Scholar 

  6. M H Hekmat, M B Rabiee and K K Ziarati J. Therm. Anal. Calorim. 138 1745 (2019)

    Article  Google Scholar 

  7. K Zhang, M Yang and Y Zhang Int. J Heat Mass Transfer. 70 434 (2014)

    Article  Google Scholar 

  8. M Sankar, S Kemparaju, B M R Prasanna and S Eswaramoorthi J. Phys.: Conf. Series. 1139 1 (2018)

    Google Scholar 

  9. M Sankar, K Beomseok, J M Lopez and Y Do Int. J. Heat Mass Transfer. 55 4116 (2012)

    Article  Google Scholar 

  10. X Shi and J M Khodadadi Trans. ASME J. Heat Transfer. 125 624 (2003)

    Article  Google Scholar 

  11. S H Tasnim M R Collins Int. Commun. Heat Mass Transfer. 31 639 (2004)

    Article  Google Scholar 

  12. H F Oztop and I Dagtekin A Bahloul Int. Commun. Heat Mass Transfer. 31 121 (2004)

    Article  Google Scholar 

  13. E Bilgen Int. J Heat Mass Transfer. 48 3493 (2005)

    Article  Google Scholar 

  14. A Ben Nakhi, A J Chamkha, Numeric. Heat Transfer: Part A. 50, 381 (2006)

  15. A Ben Nakhi, A J Chamkha, Int. J. Thermal Sci. 46, 467 (2007)

  16. P Kandaswamy, J Lee, A K Abdul Hakeem and S Saravanan Int. J Heat Mass Transfer. 51 1830 (2008)

    Article  Google Scholar 

  17. S Saravanan, A K Abdul Hakeem and P Kandaswamy Heat Transfer Res. 40 805 (2009)

    Article  Google Scholar 

  18. S H Hussain, M Y Jabbar and A S Mohamad Int. J. Therm. Sci. 50 1799 (2011)

    Article  Google Scholar 

  19. P Sriromreun, C Thianpong and P Promvonge Int. Commun. Heat Mass Transfer. 39 945 (2012)

    Article  Google Scholar 

  20. X Wang, D Shi and D Li Int. J. Heat Mass Transfer. 55 8073 (2012)

    Article  Google Scholar 

  21. K Kalidasan, R Velkennedy and P Rajesh Kanna Int. Commun. Heat Mass Transfer. 56 121 (2014)

    Article  Google Scholar 

  22. B V Pushpa, B M R Prasanna, Y Do and M Sankar J. Phys.: Conf. Series. 908 012081 (2017)

    Google Scholar 

  23. N Girish M Sankar. (Heat Transfer: O D Makinde) (2020)

    Google Scholar 

  24. D C Reda Trans. ASME J. Heat Transfer. 105 795 (1983)

    Article  Google Scholar 

  25. V Prasad, F A Kulacki and A V Kulkarni Int. J Heat Mass Transfer. 29 713 (1986)

    Article  Google Scholar 

  26. V Prasad Int. J. Heat Mass Transfer. 29 841 (1986)

    Article  Google Scholar 

  27. I S Shivakumara, B M R Prasanna, N Rudraiah and M Venkatachalappa J. Porous Media. 5 87 (2003)

    Google Scholar 

  28. M Sankar, Y Park, J M Lopez and Y Do Int. J Heat Mass Transfer. 54 1493 (2011)

    Article  Google Scholar 

  29. H Olfian, AZ Sheshpoli, SSM Ajarostaghi, Heat Transfer —Asian Res. (2020)

  30. TR Mahapatra, D Pal, S Mondal, Int. J. of Appl. Math. Comput. 4 359 (2012)

  31. T R Mahapatra, D Pal and S Mondal Nonlinear Anal.: Model. Control 17 2 223 (2012)

    Article  MathSciNet  Google Scholar 

  32. M Sankar, B Jang and Y Do J. Porous Media. 17 373 (2014)

    Article  Google Scholar 

  33. TR Mahapatra, D Pal, S Mondal, Int. J. of Appl. Math. Mech. 9(13), 23 (2013)

  34. S Mondal, T R Mahapatra and D Pal Int. J. Mech. Eng. Technol. 3 3 187 (2012)

    Google Scholar 

  35. T R Mahapatra, D Pal and S Mondal Int. J. Nonlinear Sci. 11 3 366 (2011)

    MathSciNet  Google Scholar 

  36. B M Al-Srayyih, S Gao and S H Hussain Phys. Fluids. 31 043609 (2019)

    Article  ADS  Google Scholar 

  37. T D Manh, I Tlili, A Shafee, T Nguyen-Thoi and H Hamouda Phys. A: Stat. Mech. Appl. 554 123940 (2020)

    Article  Google Scholar 

  38. M Izadi, M A Sheremet and S A M Mehryan Chin. J. Phys. 65 447 (2020)

    Article  Google Scholar 

  39. S Mondal and P Sibanda Int. J. Heat Mass Transfer. 85 401 (2015)

    Article  Google Scholar 

  40. Y Varol, H F Oztop and A Varol Int. J. Therm. Sci. 46 1033 (2007)

    Article  Google Scholar 

  41. K Khanafer A Al Amiri, J Bull Int. J Heat Mass Transfer. 87 59 (2015)

    Article  Google Scholar 

  42. P Promvonge and S Skullong Int. J Therm. Sciences. 155 106429 (2020)

    Article  Google Scholar 

  43. R Y Farsani, A Mahmoudi and M Jahangiri Therm. Sci. Eng. Progress. 16 100453 (2020)

    Article  Google Scholar 

  44. H R Abbasi, E S Sadeh, H Pourrahmani and M H Mohammadi Appl. Therm. Eng. 180 115835 (2020)

    Article  Google Scholar 

  45. X Cao, D Chen, T Du, Z Liu and S Ji Int. J. Heat Mass Transfer. 160 120181 (2020)

    Article  Google Scholar 

  46. S A M Mehryan, A Alsabery, A Modir, E Izadpanahi and M Ghalambaz Int. J. Therm. Sci. 153 106340 (2020)

    Article  Google Scholar 

  47. B V Pushpa, M Sankar and O D Makinde Therm. Sci. Eng. Progress. 20 100735 (2020)

    Article  Google Scholar 

  48. L Wang, W W Wang, Y Cai, D Liu and F Y Zhao Numeric. Heat Transfer. Part A: Appl. 77 361 (2020)

    Article  ADS  Google Scholar 

  49. T Salahuddin, M Arshad, N Siddique, I Tlili, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01833-0

Download references

Acknowledgements

BVP expressed gratitude to the Management and to VTU, Belgaum, India. MS acknowledges the funding support by the VGST, GoK, under Grant Number KSTePS/VGST-KFIST (L1)/2017. YD was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2019R1A2B5B01070579).

Author information

Authors and Affiliations

Authors

Contributions

MS formulated the problem and designed code. BVP performed numerical simulations. YD and BVP analyzed the simulations and prepared the manuscript.

Corresponding author

Correspondence to M. Sankar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpa, B.V., Do, Y. & Sankar, M. Control of buoyant flow and heat dissipation in a porous annular chamber using a thin baffle. Indian J Phys 96, 1767–1781 (2022). https://doi.org/10.1007/s12648-021-02120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02120-2

Keywords

Navigation