Skip to main content
Log in

Recent Progress on Graphs with Fixed Smallest Adjacency Eigenvalue: A Survey

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We give a survey on graphs with fixed smallest adjacency eigenvalue, especially on graphs with large minimal valency and also on graphs with good structures. Our survey mainly consists of the following two parts:

  1. (i)

    Hoffman graphs, the basic theory related to Hoffman graphs and the applications of Hoffman graphs to graphs with fixed smallest adjacency eigenvalue and large minimal valency;

  2. (ii)

    recent results on distance-regular graphs and co-edge regular graphs with fixed smallest adjacency eigenvalue and the characterizations of certain families of distance-regular graphs.

At the end of the survey, we also discuss signed graphs with fixed smallest adjacency eigenvalue and present some new findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aharoni, R., Alon, N., Berger, E.: Eigenvalues of \({K}_{1, k}\)-free graphs and the connectivity of their independence complexes. J. Graph Theory 83(4), 384–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in \(c \log n\) parallel steps. Combinatorica 3(1), 1–19 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Chung, F.R.K.: Explicit construction of linear sized tolerant networks. Discrete Math. 72(1–3), 15–19 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balla, I., Dräxler, F., Keevash, P., Sudakov, B.: Equiangular lines and spherical codes in Euclidean space. Invent. Math. 211, 179–212 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bang, S.: Diameter bounds for geometric distance-regular graphs. Discrete Math. 341(1), 253–260 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bang, S., Dubickas, A., Koolen, J.H., Moulton, V.: There are only finitely many distance-regular graphs of fixed valency greater than two. Adv. Math. 269, 1–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bang, S., Fujisaki, T., Koolen, J.H.: The spectra of the local graphs of the twisted Grassmann graphs. Eur. J. Combin. 30(3), 638–654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bang, S., van Dam, E.R., Koolen, J.H.: Spectral characterization of the Hamming graphs. Linear Algebra Appl. 429(11–12), 2678–2686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belardo, F., Cioabă, S.M., Koolen, J.H., Wang, J.F.: Open problems in the spectral theory of signed graphs. Art Discrete Appl. Math. 1(2), #P2.10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bramoullé, Y., Kranton, R., D’Amours, M.: Strategic interaction and networks. Am. Econ. Rev. 104(3), 898–930 (2014)

    Article  Google Scholar 

  12. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  13. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  14. Bussemaker, F.C., Neumaier, A.: Exceptional graphs with smallest eigenvalue \(-2\) and related problems. Math. Comput. 59(200), 583–608 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cameron, P.J., Goethals, J.M., Seidel, J.J., Shult, E.E.: Line graphs, root systems, and elliptic geometry. J. Algebra 43, 305–327 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, M.-Y., Koolen, J.H., Lin, Y.-C.R., Yu, W.-H.: The Lemmens–Seidel conjecture and forbidden subgraphs. arXiv:2003.07511v1 (2020)

  17. Cheng, X.-M., Gavrilyuk, A.L., Greaves, G.R.W., Koolen, J.H.: Biregular graphs with three eigenvalues. Eur. J. Combin. 56, 57–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, X.-M., Greaves, G.R.W., Koolen, J.H.: Graphs with three eigenvalues and second largest eigenvalue at most 1. J. Combin. Theory Ser. B 129, 55–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, X.-M., Koolen, J.H.: A generalization of a theorem of Neumaier. Des. Codes Cryptogr. 84, 135–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 327, pp. 153–172 (2005)

  21. Chudnovsky, M., Seymour, P.: Claw-free graphs. I. Orientable prismatic graphs. J. Combin. Theory Ser. B 97(6), 867–903 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chudnovsky, M., Seymour, P.: Claw-free graphs. II. Non-orientable prismatic graphs. J. Combin. Theory Ser. B 98(2), 249–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chudnovsky, M., Seymour, P.: Claw-free graphs. III. Circular interval graphs. J. Combin. Theory Ser. B 98(4), 812–834 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chudnovsky, M., Seymour, P.: Claw-free graphs. IV. Decomposition theorem. J. Combin. Theory Ser. B 98(5), 839–938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chudnovsky, M., Seymour, P.: Claw-free graphs. V. Global structure. J. Combin. Theory Ser. B 98(6), 1373–1410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chudnovsky, M., Seymour, P.: Claw-free graphs. VI. Colouring. J. Combin. Theory Ser. B 100(6), 560–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chudnovsky, M., Seymour, P.: Claw-free graphs. VII. Quasi-line graphs. J. Combin. Theory Ser. B 102(6), 1267–1294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cioabă, S.M., Koolen, J.H., Nozaki, H., Vermette, J.R.: Maximizing the order of a regular graph of given valency and second eigenvalue. SIAM J. Discrete Math. 30(3), 1509–1525 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cioabă, S.M., Elzinga, R.J., Gregory, D.A.: Some observations on the smallest adjacency eigenvalue of a graph. Discuss. Math. Graph Theory 40(2), 467–493 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cioabă, S.M., Koolen, J.H., Li, W.: Disconnecting strongly regular graphs. Eur. J. Combin. 38, 1–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cioabă, S.M., Koolen, J.H., Nozaki, H.: A spectral version of the Moore problem for bipartite regular graphs. Algebraic Comb. 2(6), 1219–1238 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Conway, J.H., Sloane, N.J.A.: Low-dimensional lattices V. Integral coordinates for integral lattices. Proc. R. Soc. Lond. A 426, 211–232 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cvetković, D., Doob, M., Simić, S.: Generalized line graphs. J. Graph Theory 5(4), 385–399 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue \(-2\). Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  35. Cvetković, D., Rowlinson, P., Simić, S.: Graphs with least eigenvalue \(-2\): ten years on. Linear Algebra Appl. 484, 504–539 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ebeling, W.: Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch. Friedr. Vieweg & Sohn, Braunschweig (1994)

    Book  MATH  Google Scholar 

  37. Friedman, J.: A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Am. Math. Soc. 195(910), 100 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Furuya, M., Kubota, S., Taniguchi, T., Yoshino, K.: The uniqueness of covers for widely generalized line graphs. arXiv:2002.08049v1 (2020)

  39. Gavrilyuk, A.L., Koolen, J.H.: On a characterization of the Grassmann graphs. arXiv:1806.02652v1 (2018)

  40. Gavrilyuk, A.L., Koolen, J.H.: A characterization of the graphs of bilinear \((d\times d)\)-forms over \(\mathbb{F}_2\). Combinatorica 39(2), 289–321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gavrilyuk, A.L., Koolen, J.H.: On some recent progress in the classification of \(({P}\) and \({Q})\)-polynomial association schemes. Arab. J. Math. in press

  42. Gavrilyuk, A. L., Munemasa, A., Sano, Y., Taniguchi, T.: Signed analogue of line graphs and their smallest eigenvalues. arXiv:2003.05578v1 (2020)

  43. Godsil, C., Meagher, K.: Erdős–Ko–Rado Theorems: Algebraic Approaches. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  44. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  45. Godsil, C.D.: Geometric distance-regular covers. N. Z. J. Math. 22, 31–38 (1993)

    MathSciNet  MATH  Google Scholar 

  46. Greaves, G., Koolen, J., Munemasa, A., Sano, Y., Taniguchi, T.: Edge-signed graphs with smallest eigenvalue greater than \(-2\). J. Combin. Theory Ser. B 110, 90–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Greaves, G., Koolen, J.H., Park, J.: Improving the Delsarte bound. arXiv:2102.05529v1 (2020)

  48. Haemers, W.H.: Hoffman’s ratio bound. Linear Algebra Appl. 617, 215–219 (2021)

  49. Hayat, S., Koolen, J.H., Riaz, M.: A spectral characterization of the \(s\)-clique extension of the square grid graphs. Eur. J. Combin. 76, 104–116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hoffman, A.J.: On spectrally bounded graphs. In: A Survey of Combinatorial Theory, pp. 277–283 (1973)

  51. Hoffman, A.J.: On graphs whose least eigenvalue exceeds \(-1-\sqrt{2}\). Linear Algebra Appl. 16, 153–165 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  52. Høholdt, T., Justesen, J.: On the sizes of expander graphs and minimum distances of graph codes. Discrete Math. 325, 38–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jang, H.J., Koolen, J., Munemasa, A., Taniguchi, T.: On fat Hoffman graphs with smallest eigenvalue at least \(-3\). ARS Math. Contemp. 7(1), 105–121 (2014)

    Article  MathSciNet  Google Scholar 

  55. Jungnickel, D., Tonchev, V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51(2), 131–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kim, H.K., Koolen, J.H., Yang, J.Y.: A structure theory for graphs with fixed smallest eigenvalue. Linear Algebra Appl. 540, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Koolen, J.H., Bang, S.: On distance-regular graphs with smallest eigenvalue at least \(-m\). J. Combin. Theory Ser. B 100, 573–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Koolen, J. H., Gebremichel, B., Rehman, M. U., Yang, J. Y., Yang, Q.: Sesqui-regular graphs with smallest eigenvalue at least \(-3\) (In preparation)

  59. Koolen, J.H., Gebremichel, B., Yang, J.Y. : Sesqui-regular graphs with fixed smallest eigenvalue. arXiv:1904.01274v1 (2019)

  60. Koolen, J.H., Li, Y.-R., Yang, Q.: On fat Hoffman graphs with smallest eigenvalue at least \(-3\), part II. Linear Algebra Appl. 550, 121–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Koolen, J.H., Munemasa, A.: The regular two-graph on \(276\) vertices revisited. Manuscript (2020)

  62. Koolen, J.H., Rehman, M.U., Yang, Q.: The integrally representable trees of norm \(3\). Ann. Math. Sci. Appl. 2(2), 385–408 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Koolen, J.H., Rehman, M.U., Yang, Q.: On the integrability of strongly regular graphs. Graphs Combin. 35, 1273–1291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Koolen, J.H., Yang, J.Y., Yang, Q.: On graphs with smallest eigenvalue at least \(-3\) and their lattices. Adv. Math. 338, 847–864 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Koolen, J.H., Yang, Q.: Problems on graphs with fixed smallest eigenvalue. Algebra Colloq. 27(1), 51–54 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Koolen, J.H., Yang, Q., Yang, J.Y.: A generalization of a theorem of Hoffman. J. Combin. Theory Ser. B 135, 75–95 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Krausz, J.: Démonstration nouvelle d’une théorème de Whitney sur les réseaux (Hungarian). Mat. Fiz. Lapok 50, 75–85 (1943)

    MathSciNet  MATH  Google Scholar 

  68. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. More Sets Graphs Numbers Bolyai Soc. Math. Stud. 15, 199–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kubota, S., Taniguchi, T., Yoshino, K.: On graphs with the smallest eigenvalue at least \(-1-\sqrt{2}\), part III. ARS Math. Contemp. 17(2), 555–579 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  70. Lemmens, P.W.H., Seidel, J.J.: Equiangular lines. J. Algebra 24(3), 494–512 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  71. Li, W.-C.W., Solé, P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur. J. Combin. 17(5), 461–477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  73. Marcus, A.W., Spielman, D.A., Srivastava, N.: Interlacing families I: bipartite Ramanujan graphs of all degrees. Ann. Math. (2) 182(1), 307–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Margulis, G.A.: Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators (Russian). Probl. Peredachi Inf. 24(1), 51–60 (1988)

    MATH  Google Scholar 

  75. Metsch, K.: A characterization of Grassmann graphs. Eur. J. Combin. 16(6), 639–644 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  76. Metsch, K.: On a characterization of bilinear forms graphs. Eur. J. Combin. 20(4), 293–306 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  77. Morgenstern, M.: Existence and explicit constructions of \(q + 1\) regular Ramanujan graphs for every prime power \(q\). J. Combin. Theory Ser. B 62(1), 44–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  78. Munemasa, A., Sano, Y., Taniguchi, T.: Fat Hoffman graphs with smallest eigenvalue at least \(-1-\tau \). ARS Math. Contemp. 7(1), 247–262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Munemasa, A., Sano, Y., Taniguchi, T.: Fat Hoffman graphs with smallest eigenvalue greater than \(-3\). Discrete Appl. Math. 176, 78–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. Munemasa, A., Tonchev, V.D.: The twisted Grassmann graph is the block graph of a design. Innov. Incid. Geom. 12(1), 1–6 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Neumaier, A.: Strongly regular graphs with smallest eigenvalue \(-m\). Arch. Math. 33, 392–400 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  82. Serre, J.-P.: Répartition asymptotique des valeurs propres de l’opérateur de Hecke \({T}_p\). (French). J. Am. Math. Soc. 10(1), 75–102 (1997)

    Article  Google Scholar 

  83. Stevanović, D.: Spectral Radius of Graphs. Academic Press, Cambridge (2015)

    MATH  Google Scholar 

  84. Suzuki, H.: An introduction to distance-regular graphs, lecture note, in three lectures in algebra. Sophia Univ. Lect. Note Ser. 41, 57–132 (1999)

    Google Scholar 

  85. Tan, Y.-Y., Koolen, J.H., Xia, Z.-J.: A spectral characterization of the \(s\)-clique extension of the triangular graphs. Discuss. Math. Graph Theory 40, 663–676 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  86. Taniguchi, T.: On graphs with the smallest eigenvalue at least \(-1-\sqrt{2}\), part I. ARS Math. Contemp. 1(1), 81–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  87. Taniguchi, T.: On graphs with the smallest eigenvalue at least \(-1-\sqrt{2}\), part II. ARS Math. Contemp. 5(2), 243–258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. Terwilliger, P.: The Johnson graph \({J}(d, r)\) is unique if \((d, r)\ne (2, 8)\). Discrete Math. 58(2), 175–189 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  89. Terwilliger, P.: The subconstituent algebra of an association scheme, (part I). J. Algebraic Combin. 1, 363–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  90. Terwilliger, P.: Lecture note on Terwilliger algebra. In: Suzuki, H. (ed) (1993). https://icu-hsuzuki.github.io/lecturenote/. Accessed 13 Nov 2020

  91. Terwilliger, P.: The subconstituent algebra of an association scheme (part III). J. Algebraic Combin. 2, 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  92. van Dam, E.R.: Nonregular graphs with three eigenvalues. J. Combin. Theory Ser. B 73(2), 101–118 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  93. van Dam, E.R., Haemers, W.H., Koolen, J.H., Spence, E.: Characterizing distance-regularity of graphs by the spectrum. J. Combin. Theory Ser. A 113(8), 1805–1820 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  94. van Dam, E.R., Koolen, J.H.: A new family of distance-regular graphs with unbounded diameter. Invent. math. 162(1), 189–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-regular graphs. Electron. J. Combin. Dyn. Surv. #DS22 (2016)

  96. Woo, R., Neumaier, A.: On graphs whose smallest eigenvalue is at least \(-1-\sqrt{2}\). Linear Algebra Appl. 226–228, 577–591 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  97. Yang, J.Y., Koolen, J.H.: On the order of regular graphs with fixed second largest eigenvalue. Linear Algebra Appl. 610, 29–39 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  98. Yang, Q., Abiad, A., Koolen, J.H.: An application of Hoffman graphs for spectral characterizations of graphs. Electron. J. Combin. 24(1), #P1.12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. Yu, H.: On the limit points of the smallest eigenvalues of regular graphs. Des. Codes Cryptogr. 65, 77–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.H. Koolen is partially supported by the National Natural Science Foundation of China (No. 12071454) and Anhui Initiative in Quantum Information Technologies (No. AHY150000). Q. Yang is partially supported by the Fellowship of China Postdoctoral Science Foundation (No. 2020M671855). We greatly thank Prof. Min Xu for supporting M.-Y. Cao to visit University of Science and Technology of China. We are also grateful to Prof. Sebastian M. Cioabă, Prof. Akihiro Munemasa, Dr. Jongyook Park and Mr. Kiyoto Yoshino for their careful reading and valuable comments.

Funding

Funding (information that explains whether and by whom the research was supported). J.H. Koolen is partially supported by the National Natural Science Foundation of China (No. 12071454), Anhui Initiative in Quantum Information Technologies (No. AHY150000) and the project “Analysis and Geometry on Bundles” of Ministry of Science and Technology of the People’s Republic of China. Q. Yang is partially supported by the Fellowship of China Postdoctoral Science Foundation (No. 2020M671855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Yang.

Ethics declarations

Conflict of interest

No conflicts of interest.

Additional information

In memory of Alan J. Hoffman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Q-polynomial distance-regular graphs

Appendix A. Q-polynomial distance-regular graphs

Let V denote a non-empty finite set. Let \(\mathrm {Mat}_V({\mathbb {C}})\) denote the \({\mathbb {C}}\)-algebra consisting of all complex matrices whose rows and columns are indexed by V. Let \(\mathbb {U}={\mathbb {C}}^V\) denote the \({\mathbb {C}}\)-vector space consisting of all complex vectors indexed by V. We endow \(\mathbb {U}\) with standard Hermitian inner product \(({\mathbf {u}},{\mathbf {v}})={\mathbf {u}}^T\overline{{\mathbf {v}}}\) for \({\mathbf {u}},{\mathbf {v}} \in \mathbb {U}\). We view \(\mathbb {U}\) as a left module for \(\mathrm {Mat}_V({\mathbb {C}})\), called the standard module.

Let G be a distance-regular graph of diameter D. Let V be the vertex set of G. For \(0\le i\le D\), let \(A_i\) denote the matrix in \(\mathrm {Max}_{V}({\mathbb {C}})\) defined by

$$\begin{aligned} (A_i)_{x,y}=\left\{ \begin{array}{ll} 1 &{} \text { if }d(x,y)=i, \\ 0 &{} \text { otherwise}, \end{array} \right. \end{aligned}$$

where \(x,y\in V\). We call \(A_i\) the ith distance matrix of G. We abbreviate \(A:=A_1\). Observe that

  1. (1a)

    \(A_0=I\);

  2. (1b)

    \(\sum ^D_{i=0}A_i=J\), the all-ones matrix;

  3. (1c)

    each \(A_i\) is real symmetric;

  4. (1d)

    there exist \(p_{ij}^h\) for \(0\le i,j,h\le D\), such that \(A_iA_j =A_jA_i= \sum ^D_{h=0}p^h_{ij}A_h\) hold.

Notice that (1a) implies for each pair vertices \(x,y\in V\) with \(d(x,y)=h\), the equality \(|G_i(x)\cap G_j(y)|=p_{ij}^h\) holds. Therefore, for all integers \(0\le h,i,j\le D\), \(p^h_{ij}=0\) (resp. \(p^h_{ij}\ne 0\)) if one of hij is greater than (resp. equal to) the sum of the other two. By these facts, we find that \(A_0, A_1,\ldots , A_D\) is a basis for a commutative subalgebra M of \(\mathrm {Mat}_V({\mathbb {C}})\), which we call the Bose-Mesner algebra of G. It is known that A generates M, as \(AA_i=c_{i+1}A_{i+1}+a_iA_i+b_{i-1}A_{i-1}\) (\(0\le i\le D\)) by condition (iv), where \(\{b_0,b_1,\ldots ,b_{D-1};c_1,c_2,\ldots ,c_D\}\) is the intersection array of G.

The algebra M has a second basis \(E_0, E_1, \ldots , E_D\) such that

  1. (2a)

    \(E_0=|V|^{-1}J\),

  2. (2b)

    \(\sum ^D_{i=0}E_i=I\),

  3. (2c)

    each \(E_i\) is real symmetric,

  4. (2d)

    \(E_iE_j=E_jE_i=\delta _{ij}E_i\)

(see [12, p. 45]). We call \(E_i\) the ith primitive idempotent of G. Since \(\{E_i\}^D_{i=0}\) is a basis for M, there exist complex scalars \(\{\theta _i\}^D_{i=0}\) such that \(A=\sum ^D_{i=0}\theta _i E_i\). (Note that \(\{\theta _i\}^D_{i=0}\) are exactly all of the distinct eigenvalues of G and they are real.) Observe \(AE_i=E_iA=\theta _iE_i\) for \(0\le i \le D\). We call \(\theta _i\) the eigenvalue of G associated with \(E_i\) for \(0\le i \le D\). Observe \(\mathbb {U}=E_0\mathbb {U}\oplus E_1\mathbb {U}\oplus \cdots \oplus E_D\mathbb {U}\), an orthogonal direct sum. For \(0\le i \le D\), \(E_i\mathbb {U}\) is the eigenspace of A associated with \(\theta _i\). Denote by \(m_i\) the rank of \(E_i\) and observe \(m_i=\dim (E_i\mathbb {U})\), the multiplicity of the eigenvalue \(\theta _i\).

We now introduce the notion of Q-polynomial property of G. Let \(\circ \) denote the entrywise product in \(\mathrm {Mat}_V({\mathbb {C}})\). Since \(A_i\circ A_j =\delta _{ij}A_i\), the Bose-Mesner algebra M is closed under \(\circ \). Also as \(\{E_i\}^D_{i=0}\) is a basis for M, there exist complex scalars \(q^h_{ij}\) such that

$$\begin{aligned} E_i\circ E_j = |V|^{-1}\sum ^D_{h=0}q^h_{ij}E_h. \end{aligned}$$

By [12, p. 48, p. 49], the scalars \(q^h_{ij}\) are real and non-negative. We say G is Q-polynomial (with respect to the given ordering \(E_0, E_1, \ldots , E_D\)) whenever for all integers \(0\le h,i,j\le D\), \(q^h_{ij}=0\) (resp. \(q^h_{ij}\ne 0\)) if one of hij is greater than (resp. equal to) the sum of the other two [12, p. 235].

We assume G is Q-polynomial with respect to the ordering \(E_0, E_1, \ldots , E_D\). Fix a vertex \(x \in V\). We refer to x as a “base” vertex. For \(0 \le i \le D\), we define the diagonal matrix \(E^*_i=E^*_i(x) \in \mathrm {Mat}_V({\mathbb {C}})\) with diagonal entry

$$\begin{aligned} (E^*_i)_{y,y} =\left\{ \begin{array}{ll} 1 &{} \text { if }d(x,y)=i, \\ 0 &{} \text { otherwise}, \end{array} \right. \end{aligned}$$

where \(y\in V\). We call \(E^*_i\) the ith dual primitive idempotent of G with respect to x. Observe

  1. (3a)

    \(\sum ^D_{i=0}E^*_i=I\),

  2. (3b)

    each \(E^*_i\) is real symmetric,

  3. (3c)

    \(E^*_iE^*_j=\delta _{ij}E^*_i\).

By these facts, \(E^*_0, E^*_1, \ldots , E^*_D\) is a basis for a commutative subalgebra \(M^*\) of \(\mathrm {Mat}_V({\mathbb {C}})\), which we call the dual Bose-Mesner algebra of G.

Define the diagonal matrix \(A^*_i=A^*_i(x) \in \mathrm {Mat}_V({\mathbb {C}})\) with diagonal entry \((A^*_i)_{y,y} = |V|(E_i)_{x,y}\) for \(y\in V\). By [89, p. 379], \(A^*_0, A^*_1, \ldots , A^*_D\) is also a basis for \(M^*\), and moreover

  1. (4a)

    \(A^*_0=I\),

  2. (4b)

    \(\sum ^D_{i=0}A^*_i=|V|E_0^*\),

  3. (4c)

    each \(A_i^*\) is real and symmetric,

  4. (4d)

    \(A^*_iA^*_j=A^*_jA^*_i=\sum ^D_{h=0} q^h_{ij} A^*_h\).

We call \(A^*_i\) the ith dual distance matrix of G with respect to x. We abbreviate \(A^*=A^*_1\), called the dual adjacency matrix of G with respect to x. From conditions (4a) and (4d), we find that the matrix \(A^*\) generates \(M^*\). Since \(\{E^*_i\}^D_{i=0}\) is a basis for \(M^*\), there exist complex scalars \(\{\theta ^*_i\}^D_{i=0}\) such that \(A^*=\sum ^D_{i=0}\theta ^*_iE^*_i\). Observe \(A^*E^*_i=E^*_iA^*=\theta ^*_iE^*_i\) for \(0 \le i \le D\). The scalars \(\{\theta ^*_i\}^D_{i=0}\) are real [89, Lemma 3.11] and mutually distinct. We call \(\theta ^*_i\) the dual eigenvalue of G associated with \(E^*_i\). Observe \(\mathbb {U}=E^*_0\mathbb {U}\oplus E^*_1\mathbb {U}\oplus \cdots \oplus E^*_D\mathbb {U}\), an orthogonal direct sum. For \(0 \le i \le D\), the space \(E^*_i\mathbb {U}\) is the eigenspace of \(A^*\) associated with \(\theta ^*_i\).

Let \(T=T(x)\) denote the subalgebra of \(\mathrm {Mat}_V({\mathbb {C}})\) generated by M and \(M^*\). We call T the Terwilliger algebra (or subconstituent algebra) of G with respect to x [89]. Note that A and \(A^*(x)\) generates T. The algebra T is finite dimensional and non-commutative. It is also semi-simple since it is closed under conjugate and transpose map. The following are relations in T [89, Lemma 3.2]. For \(0 \le h,i,j \le D\),

$$\begin{aligned} E^*_iA_hE^*_j =&0 \quad \text {if and only if} \quad p^h_{ij}=0,\\ E_iA^*_hE_j =&0 \quad \text {if and only if} \quad q^h_{ij}=0. \end{aligned}$$

Note that T may depend on the choice of the base vertex (see [8]).

By a T-module, we mean a subspace \(\mathbb {W}\) of \(\mathbb {U}\) such that \(B\mathbb {W}\subseteq \mathbb {W}\) for all \(B\in T\). Observe that \(\mathbb {U}\) is a T-module, called the standard module of T (or standard T-module). A T-module is called irreducible if it contains no T-submodule except itself and zero module.

Let \(\mathbb {W}\) be a T-module and \(\mathbb {W}_1\) a T-submodule of \(\mathbb {W}\). Then the orthogonal complement of \(W_1\) in W is a T-module, since T is closed under conjugate transpose map. It follows that W decomposes into an orthogonal direct sum of irreducible T-modules.

Let W denote an irreducible T-module. Then W decomposes into a direct sum of nonzero spaces among \(E^*_iW\), \(0 \le i \le D\). By the endpoint of W, we mean \(\min \{i \mid 0 \le i \le D, E^*_iW\ne 0\}\). By the diameter of W, we mean \(|\{i \mid 0 \le i \le D, E^*_iW\ne 0\}|-1\). Let r denote the endpoint of W and d the diameter of W. By [89, Lemma 3.9], we have (i) \(E^*_iW \ne 0\) if and only if \(r \le i \le r+d\); (ii) \(W=\bigoplus ^d_{h=0}E^*_{r+h}W\), an orthogonal direct sum. An irreducible T-module W is said to be thin whenever \(\dim (E^*_iW)\le 1\) for \(0 \le i \le D\). There exists a unique thin irreducible T-module with endpoint 0 and diameter D, which we call it the primary T-module. The primary T-module has a basis \(E^*_0{\mathbf {j}}, \ldots , E^*_D{\mathbf {j}}\) [89, Lemma 3.6], where \({\mathbf {j}}\) is the all-ones vector.

The graph G is said to be thin with respect to x whenever every irreducible T(x)-module is thin. The graph G is said to be thin whenever G is thin with respect to every vertex x of G. See [91, Section 6] for examples of thin Q-polynomial distance-regular graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koolen, J.H., Cao, MY. & Yang, Q. Recent Progress on Graphs with Fixed Smallest Adjacency Eigenvalue: A Survey. Graphs and Combinatorics 37, 1139–1178 (2021). https://doi.org/10.1007/s00373-021-02296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02296-8

Keywords

Mathematics Subject Classification

Navigation