Skip to main content
Log in

Mobility and environmental monitoring of pesticides in the atmosphere — a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Knowledge of the partition mechanisms in the agrochemical environment is fundamental for understanding their behavior within an ecosystem and mitigating possible adverse effects of these products. In this review, the objective was to present the main transport mechanisms, physical-chemical properties, and atmospheric monitoring methodologies of the most diverse types of agrochemicals used in agriculture that can reach the atmosphere and affect different compartments. It has been verified that volatilization is one of more considerable significance of the various forms of transport since a significant part of the applied pesticides can volatilize in a few days. As for monitoring these compounds in the atmosphere, both passive and active sampling have their advantages and disadvantages. Passive samplers allow sampling in large quantities and at remote locations, in addition to making continuous measurements, while active samplers have the advantage of being able to detect low concentrations and continuously. Since a significant portion of the applied pesticides is directed to the atmosphere, monitoring makes it possible to understand some properties of the pesticides present in the air. This monitoring can be done from different existing methodologies based on adopted criteria and existing technical standards.

Graphical abstract

Graphical representation of mobility and environmental monitoring of atmospheric pollutants from pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Al-Alam J, Lévy M, Ba H et al (2020) Passive air samplers based on ceramic adsorbent for monitoring of organochlorine pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in outdoor air. Environ Technol Innov 20:101094. https://doi.org/10.1016/j.eti.2020.101094

    Article  CAS  Google Scholar 

  • Alves GS, Kruger GR, da Cunha JPAR et al (2017) Spray drift from dicamba and glyphosate applications in a wind tunnel. Weed Technol 31:387–395

    Article  Google Scholar 

  • Anspaugh LR, Shinn JH, Phelps PL (1975) Resuspension and redistribution of plutonium in soils

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. https://doi.org/10.1016/j.agee.2007.07.011

    Article  CAS  Google Scholar 

  • Armitage JM, Hayward SJ, Wania F (2013) Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM). Environ Sci Technol 47:13546–13554

    Article  CAS  Google Scholar 

  • ASTM. AMERICAN SOCIETY FOR TESTING AND MATERIALS (2017) ASTM D4861-17. Standard practice for sampling and selection of analytical techniques for pesticides and polychlorinated biphenyls in air. 16

  • Baas J (1994) Emissions of pesticide from orchards to the atmosphere (in Dutch). Inst. Environ. Sci. 94

  • Balmer JE, Morris AD, Hung H, Jantunen L, Vorkamp K, Rigét F, Evans M, Houde M, Muir DCG (2019) Levels and trends of current-use pesticides (CUPs) in the arctic: an updated review, 2010–2018. Emerg Contam 5:70–88. https://doi.org/10.1016/j.emcon.2019.02.002

    Article  Google Scholar 

  • Bedos C, Cellier P, Calvet R, Barriuso E (2002) Occurrence of pesticides in the atmosphere in France. Agronomie 22:35–49

    Article  Google Scholar 

  • Behrens R, Lueschen WE (1979) Dicamba volatility. Weed Sci 27:486–493

    Article  CAS  Google Scholar 

  • Benicha M, Mrabet R, Azmani A, others (2011) Biodegradation and dissipation of 14 C-carbofuran in clay soil from Loukkos perimeter, Northwestern Morocco. JSSEM 2:404–410

    CAS  Google Scholar 

  • Bidleman TF, Melymuk L (2019) Forty-five years of foam: a retrospective on air sampling with polyurethane foam. Bull Environ Contam Toxicol 102:447–449. https://doi.org/10.1007/s00128-019-02591-4

    Article  CAS  Google Scholar 

  • Bidleman TF, Olney CE (1974) High-volume collection of atmospheric polychlorinated biphenyls. Bull Environ Contam Toxicol 11:442–450

    Article  CAS  Google Scholar 

  • Bidleman TF, Billings WN, Foreman WT (1986) Vapor-particle partitioning of semivolatile organic compounds: estimates from field collections. Environ Sci Technol 20:1038–1043

    Article  CAS  Google Scholar 

  • Bohlin P, Jones KC, Levin J-O, Lindahl R, Strandberg B (2010) Field evaluation of a passive personal air sampler for screening of PAH exposure in workplaces. J Environ Monit 12:1437–1444

    Article  CAS  Google Scholar 

  • Bohlin P, Audy O, Škrdlíková L, Kukučka P, Přibylová P, Prokeš R, Vojta Š, Klánová J (2014a) Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks. Environ Sci Process Impacts 16:433–444. https://doi.org/10.1039/c3em00644a

    Article  CAS  Google Scholar 

  • Bohlin P, Audy O, Škrdlíková L, Kukučka P, Vojta Š, Přibylová P, Prokeš R, Čupr P, Klánová J (2014b) Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments. Environ Sci Process Impacts 16:2617–2626

    Article  CAS  Google Scholar 

  • Bourgin M, Albet J, Violleau F (2013) Study of the degradation of pesticides on loaded seeds by ozonation. J Environ Chem Eng 1:1004–1012. https://doi.org/10.1016/j.jece.2013.08.015

    Article  CAS  Google Scholar 

  • Broman D, Näf C, Zebühr Y (1991) Long-term high and low-volume air sampling of polychlorinated dibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons along a transect from urban to remote areas on the Swedish Baltic Coast. Environ Sci Technol 25:1841–1850

    Article  CAS  Google Scholar 

  • Brown RH, Wright MD (1994) Diffusive sampling using tube-type samplers. Analyst 119:75–77

    Article  CAS  Google Scholar 

  • Buehler SS, Basu I, Hites RA (2001) A comparison of PAH, PCB, and pesticide concentrations in air at two rural sites on Lake Superior. Environ Sci Technol 35:2417–2422

    Article  CAS  Google Scholar 

  • Buehler SS, Basu I, Hites RA et al (2004) Concentrations in air near the Great Lakes and PCB concentrations in air near the Great Lakes. Environ Sci Technol 38:414–422. https://doi.org/10.1021/es034699v

    Article  CAS  Google Scholar 

  • Bueno MR, da Cunha JPAR, de Santana DG (2017) Assessment of spray drift from pesticide applications in soybean crops. Biosyst Eng 154:35–45

    Article  Google Scholar 

  • Burgoyne TW, Hltes RA (1993) Effects of temperature and wind direction on the atmospheric concentrations of a-endosulfan. Environ Sci Technol 27:910–914. https://doi.org/10.1021/es00042a013

    Article  CAS  Google Scholar 

  • Canadá (2001) Semi-routine monitoring project. 97

  • Can-Güven E, Gedik K, Kurt-Karakuş PB (2019) Polyurethane foam disk passive sampler derived air concentrations of persistent organic pollutants in an agricultural region with hot climate. Atmos Pollut Res 10:1913–1920. https://doi.org/10.1016/j.apr.2019.08.004

    Article  CAS  Google Scholar 

  • Carlson D, Hites RA (2005) Temperature dependence of atmospheric PCB concentrations. Environ Sci Technol 39:740–747

    Article  CAS  Google Scholar 

  • Carratalá A, Moreno-González R, León VM (2017) Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain). Chemosphere 167:382–395. https://doi.org/10.1016/j.chemosphere.2016.09.157

    Article  CAS  Google Scholar 

  • Carson R (1962) Silent spring, 1st edn. Mariner Books, Boston

    Google Scholar 

  • Cessna AJ, Larney FJ, Kerr LA, Bullock MS (2006) Transport of trifluralin on wind-eroded sediment. Can J Soil Sci 86:545–554. https://doi.org/10.4141/S04-075

    Article  CAS  Google Scholar 

  • Chaemfa C, Barber JL, Gocht T, Harner T, Holoubek I, Klanova J, Jones KC (2008) Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides. Environ Pollut 156:1290–1297

    Article  CAS  Google Scholar 

  • Chimjarn S, Delhomme O, Millet M (2021) Temporal distribution and gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Strasbourg, France. Atmosphere (Basel) 12:337. https://doi.org/10.3390/atmos12030337

    Article  Google Scholar 

  • Chiou CT (2002) Partition and adsorption of organic contaminants in environmental systems, 1st edn. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  • Climent MJ, Coscollà C, López A, Barra R, Urrutia R (2019) Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. Sci Total Environ 662:646–654. https://doi.org/10.1016/j.scitotenv.2019.01.302

    Article  CAS  Google Scholar 

  • Coscollà C, Yusà V (2016) Pesticides and agricultural air quality. Compr Anal Chem 73:423–490

    Article  Google Scholar 

  • Cotham WE, Bidleman TF (1992) Laboratory investigations of the partitioning of organochlorine compounds between the gas phase and atmospheric aerosols on glass fiber filters. Environ Sci Technol 26:469–478

    Article  CAS  Google Scholar 

  • Daignault SA, Noot DK, Williams DT, Huck PM (1988) A review of the use of XAD resins to concentrate organic compounds in water. Water Res 22:803–813. https://doi.org/10.1016/0043-1354(88)90017-6

    Article  CAS  Google Scholar 

  • Dailey OD (2004) Volatilization of alachlor from polymeric formulations. J Agric Food Chem 52:6742–6746

    Article  CAS  Google Scholar 

  • Daly GL, Lei YD, Teixeira C, Muir DCG, Castillo LE, Wania F (2007a) Accumulation of current-use pesticides in neotropical montane forests. Environ Sci Technol 41:1118–1123. https://doi.org/10.1021/es0622709

    Article  CAS  Google Scholar 

  • Daly GL, Lei YD, Teixeira C, Muir DCG, Wania F (2007b) Pesticides in western Canadian mountain air and soil. Environ Sci Technol 41:6020–6025. https://doi.org/10.1021/es070848o

    Article  CAS  Google Scholar 

  • Das S, Hageman KJ (2020) Influence of adjuvants on pesticide soil-air partition coefficients: laboratory measurements and predicted effects on volatilization. Environ Sci Technol 54:7302–7308. https://doi.org/10.1021/acs.est.0c00964

    Article  CAS  Google Scholar 

  • Davie-Martin CL, Hageman KJ, Chin YP, Rougé V, Fujita Y (2015) Influence of temperature, relative humidity, and soil properties on the soil-Air partitioning of semivolatile pesticides: laboratory measurements and predictive models. Environ Sci Technol 49:10431–10439. https://doi.org/10.1021/acs.est.5b02525

    Article  CAS  Google Scholar 

  • de Guida YS, Meire RO, JPM T, Malm O (2018) Air contamination by legacy and current-use pesticides in Brazilian mountains: an overview of national regulations by monitoring pollutant presence in pristine areas. Environ Pollut 242:19–30. https://doi.org/10.1016/j.envpol.2018.06.061

    Article  CAS  Google Scholar 

  • de Paula Ribeiro AL, Brum APR, Kemmerich M et al (2020) 2, 4-D em videiras: estudo de caso no Município de Jaguari-RS, estado do Rio Grande do Sul, Brasil. Res Soc Dev 9:e2129108379–e2129108379

    Article  Google Scholar 

  • Degrendele C, Okonski K, Melymuk L, Landlová L, Kukučka P, Audy O, Kohoutek J, Čupr P, Klánová J (2016) Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos Chem Phys Discuss 15:23651–23681. https://doi.org/10.5194/acp-16-1531-2016

  • Dobson R, Scheyer A, Rizet AL, Mirabel P, Millet M (2006) Comparison of the efficiencies of different types of adsorbents at trapping currently used pesticides in the gaseous phase using the technique of high-volume sampling. Anal Bioanal Chem 386:1781–1789. https://doi.org/10.1007/s00216-006-0737-2

    Article  CAS  Google Scholar 

  • Duttweiler DW, Malakhov SG (1977) USA-USSR Symposium on environmental transport and transformation of pesticides. J Agric Food Chem 25:975–978

    Article  Google Scholar 

  • Egan JF, Mortensen DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environ Toxicol Chem 31:1023–1031. https://doi.org/10.1002/etc.1778

    Article  CAS  Google Scholar 

  • Estellano VH, Pozo K, Harner T, Corsolini S, Focardi S (2012) Using PUF disk passive samplers to simultaneously measure air concentrations of persistent organic pollutants (POPs) across the Tuscany Region, Italy. Atmos Pollut Res 3:88–94. https://doi.org/10.5094/APR.2012.008

    Article  CAS  Google Scholar 

  • Estellano VH, Pozo K, Efstathiou C, Pozo K, Corsolini S, Focardi S (2015) Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers. Environ Pollut 205:52–59. https://doi.org/10.1016/j.envpol.2015.05.002

    Article  CAS  Google Scholar 

  • Esteve-Turrillas FA, Pastor A, Yusa V, de la Guardia M (2007) Using semi-permeable membrane devices as passive samplers. TrAC Trends Anal Chem 26:703–712

    Article  CAS  Google Scholar 

  • FOCUS (2008) Pesticides in air: considerations for exposure assessment. Report of the Focus working group on pesticides in air. 327

  • Freed V (1975) Environmental Dynamics of Pesticides: An Overview. In: Environmental dynamics of pesticides. Plenum Press, New York

    Chapter  Google Scholar 

  • Führ F, Burauel P, Bust M, et al (1998) The lysimeter concept. In: comprehensive tracer studies on the environmental behavior of pesticides. American Chemical Society, Washington

  • Fuhrimann S, Klánová J, Přibylová P, Kohoutek J, Dalvie MA, Röösli M, Degrendele C (2020) Qualitative assessment of 27 current-use pesticides in air at 20 sampling sites across Africa. Chemosphere 258:127333. https://doi.org/10.1016/j.chemosphere.2020.127333

    Article  CAS  Google Scholar 

  • Garcia-Jares C, Barro R, Llompart M (2019) Indoor air sampling. In: Pawliszyn J (ed) Comprehensive Sampling and Sample Preparation. Elsevier, pp 76–111

  • Genualdi S a, Killin RK, Woods J et al (2009) Trans-pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America Susan. Environ Sci Technol 43:1061–1066. https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted

    Article  CAS  Google Scholar 

  • Genualdi S, Lee SC, Shoeib M, Gawor A, Ahrens L, Harner T (2010) Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers. Environ Sci Technol 44:5534–5539

    Article  CAS  Google Scholar 

  • Gil Y, Sinfort C (2005) Emission of pesticides to the air during sprayer application: a bibliographic review. Atmos Environ 39:5183–5193. https://doi.org/10.1016/j.atmosenv.2005.05.019

    Article  CAS  Google Scholar 

  • Glotfelty DE, Leech MM, Jersey J, Taylor AW (1989) Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor, and toxaphene. J Agric Food Chem 37:546–551

    Article  CAS  Google Scholar 

  • Góngora-Echeverría VR, Martin-Laurent F, Quintal-Franco C et al (2019) Dissipation and adsorption of 2, 4-D, atrazine, diazinon, and glyphosate in an agricultural soil from Yucatan state, Mexico. Water Air Soil Pollut 230:1–15

    Article  Google Scholar 

  • Gordon B, Tepper G (2013) Surface temperature inversions and spraying fact: fact sheet. GRDC 4

  • Górecki T, Namienik J (2002) Passive sampling. Trends Anal Chem 21:276–291. https://doi.org/10.1016/S0165-9936(02)00407-7

    Article  Google Scholar 

  • Gouin T, Wania F, Ruepert C, E. Castillo L (2008) Field testing passive air samplers for current use pesticides in a tropical environment. Environ Sci Technol 42:6625–6630. doi: https://doi.org/10.1021/es8008425

  • Green J (2000) Adjuvant outlook for pesticides. Pestic Outlook 11:196–199

    Article  CAS  Google Scholar 

  • Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T (2015) Pesticide levels and environmental risk in aquatic environments in China - A review. Environ Int 81:87–97. https://doi.org/10.1016/j.envint.2015.04.013

    Article  CAS  Google Scholar 

  • Guth JA, Reischmann FJ, Allen R, Arnold D, Hassink J, Leake CR, Skidmore MW, Reeves GL (2004) Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions—prediction of volatile losses from physico-chemical properties. Chemosphere 57:871–887

    Article  CAS  Google Scholar 

  • Hager A (2017) Observations of the Midwest weed extension scientists. In: Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. North Central Weed Science Society, St Louis, p 98

    Google Scholar 

  • Hao Y, Li Y, Wania F, Yang R, Wang P, Zhang Q, Jiang G (2021) Atmospheric concentrations and temporal trends of polychlorinated biphenyls and organochlorine pesticides in the Arctic during 2011–2018. Chemosphere 267:128859. https://doi.org/10.1016/j.chemosphere.2020.128859

    Article  CAS  Google Scholar 

  • Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2004) Using passive air samplers to assess urban - rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol 38:4474–4483. https://doi.org/10.1021/es040302r

    Article  CAS  Google Scholar 

  • Harnly M, McLaughlin R, Bradman A, Anderson M, Gunier R (2005) Correlating agricultural use of organophosphates with outdoor air concentrations: a particular concern for children. Environ Health Perspect 113:1184–1189

    Article  CAS  Google Scholar 

  • Hayward SJ, Gouin T, Wania F (2010) Comparison of four active and passive sampling techniques for pesticides in air. Environ Sci Technol 44:3410–3416. https://doi.org/10.1021/es902512h

    Article  CAS  Google Scholar 

  • Herzfeld D, Sargent K (2011) Private pesticide applicator safety education manual. In: Protecting the Environment, 19th edn. University of Minnesota Extension, Minnesota

  • Hofman V, Solseng E (2001) Reducing Spray Drift. 8

  • Holt EA, Miller SW (2011) Bioindicators: using organisms to measure. Nature 3:8–13

    Google Scholar 

  • Huang H, Ding Y, Chen W, Zhang Y, Chen W, Chen Y, Mao Y, Qi S (2019) Two-way long-range atmospheric transport of organochlorine pesticides (OCPs) between the Yellow River source and the Sichuan Basin, Western China. Sci Total Environ 651:3230–3240. https://doi.org/10.1016/j.scitotenv.2018.10.133

    Article  CAS  Google Scholar 

  • Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipids; a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioeoneentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  • Hulin M, Leroux C, Mathieu A, Gouzy A, Berthet A, Boivin A, Bonicelli B, Chubilleau C, Hulin A, Leoz Garziandia E, Mamy L, Millet M, Pernot P, Quivet E, Scelo AL, Merlo M, Ruelle B, Bedos C (2021) Monitoring of pesticides in ambient air: prioritization of substances. Sci Total Environ 753:141722. https://doi.org/10.1016/j.scitotenv.2020.141722

    Article  CAS  Google Scholar 

  • IPCC (2019) The Intergovernmental Panel on Climate Change: special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/srocc/. Accessed 18 Nov 2020

  • Jansma J., Linders JBH. (1995) Volatilization of pesticides from soil and plants after spraying

  • Jepson PC, Murray K, Bach O, Bonilla MA, Neumeister L (2020) Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list. Lancet Planet Heal 4:e56–e63. https://doi.org/10.1016/S2542-5196(19)30266-9

    Article  Google Scholar 

  • Kannan N, Petrick G (2009) Semi permeable membrane device reveals indoor and outdoor contamination of polychlorinated biphenyls (PCBs). Toxicol Environ Heal Sci 1:91–96. https://doi.org/10.1007/BF03216469

    Article  Google Scholar 

  • Kaupp H, Umlauf G (1992) Atmospheric gas-particle partitioning of organic compounds: comparison of sampling methods. Atmos Environ Part A Gen Top 26:2259–2267

    Article  Google Scholar 

  • Kim UJ, Kim HY, Alvarez D, Lee IS, Oh JE (2014) Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples. Sci Total Environ 470–471:1537–1544. https://doi.org/10.1016/j.scitotenv.2013.06.033

    Article  CAS  Google Scholar 

  • Klánová J, Èupr P, Kohoutek J, Harner T (2008) Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers. Environ Sci Technol 42:550–555

    Article  Google Scholar 

  • Klik A, Rosner J (2020) Long-term experience with conservation tillage practices in Austria: impacts on soil erosion processes. Soil Tillage Res 203:104669. https://doi.org/10.1016/j.still.2020.104669

    Article  Google Scholar 

  • Koblizkova M, Genualdi S, Lee SC, Harner T (2012a) Application of sorbent impregnated polyurethane foam (SIP) disk passive air samplers for investigating organochlorine pesticides and polybrominated diphenyl ethers at the global scale. Environ Sci Technol 46:391–396

    Article  CAS  Google Scholar 

  • Koblizkova M, Lee SC, Harner T (2012b) Sorbent impregnated polyurethane foam disk passive air samplers for investigating current-use pesticides at the global scale. Atmos Pollut Res 3:456–462. https://doi.org/10.5094/APR.2012.052

    Article  CAS  Google Scholar 

  • Kuang Z, Mcconnell LL, Torrents A, Meritt D, Tobash S (2003) Atmospheric deposition of pesticides to an agricultural watershed of the Chesapeake Bay. J Environ Qua 32:1611–1622. https://doi.org/10.2134/jeq2003.1611

  • Langenbach T, Caldas LQ (2018) Strategies for reducing airborne pesticides under tropical conditions. Ambio 47:574–584

    Article  Google Scholar 

  • Lei YD, Wania F (2004) Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ 38:3557–3571. https://doi.org/10.1016/j.atmosenv.2004.03.039

    Article  CAS  Google Scholar 

  • Leistra M (2005) Estimating input data for computations on the volatilisation of pesticides from plant canopies and competing processes. Alterra 1256:12

  • LeNoir JS, McConnell LL, Fellers GM et al (1999) Summertime transport of current-use pesticides from California’s Central Valley to the Sierra Nevada Mountain Range, USA. Environ Toxicol Chem 18:2715–2722. https://doi.org/10.1897/1551-5028(1999)018<2715:stocup>2.3.co;2

    Article  CAS  Google Scholar 

  • Lentola A, Giorio C, Toffolo EP et al (2020) A new method to assess the acute toxicity toward honeybees of the abrasion particles generated from seeds coated with insecticides. Environ Sci Eur 32:1–10

    Article  Google Scholar 

  • Levy W, Henkelmann B, Pfister G, Bernhöft S, Kirchner M, Jakobi G, Bassan R, Kräuchi N, Schramm KW (2009) Long-term air monitoring of organochlorine pesticides using semi permeable membrane devices (SPMDs) in the Alps. Environ Pollut 157:3272–3279. https://doi.org/10.1016/j.envpol.2009.05.043

    Article  CAS  Google Scholar 

  • Lévy M, Al-Alam J, Ridacker C et al (2018) Use of XAD®-2 passive air samplers for monitoring environmental trends of PAHs, PCBs and pesticides in three different sites in Strasbourg and its vicinity (east of France). Atmos Environ 195:12–23. https://doi.org/10.1016/j.atmosenv.2018.09.052

    Article  CAS  Google Scholar 

  • Lévy M, Ba H, Pallares C, Pham-Huu C, Millet M (2020) Comparison and calibration of diverse passive samplers used for the air sampling of pesticides during a regional sampling monitoring campaign. Atmos Pollut Res 11:1217–1225. https://doi.org/10.1016/j.apr.2020.03.014

    Article  CAS  Google Scholar 

  • López A, Coscollà C, Yusà V (2018) Evaluation of sampling adsorbents and validation of a LC-HRMS method for determination of 28 airborne pesticides. Talanta 189:211–219. https://doi.org/10.1016/j.talanta.2018.06.078

    Article  CAS  Google Scholar 

  • Majewski MS, Capel PD (1996) Pesticides in the atmosphere: distribution, trends, and governing factors. Ann Arbor Press, Inc., Chelsea

    Book  Google Scholar 

  • Majewski MS, Coupe RH, Foreman WT, Capel PD (2014) Pesticides in Mississippi air and rain: a comparison between 1995 and 2007. Environ Toxicol Chem 33:1283–1293. https://doi.org/10.1002/etc.2550

    Article  CAS  Google Scholar 

  • Manzone M, Balsari P, Marucco P, Tamagnone M (2016) Potential external contamination of pneumatic seed drills during sowing of dressed maize seeds. Pest Manag Sci 72:1302–1308

    Article  CAS  Google Scholar 

  • Markovic MZ, Prokop S, Staebler RM, Liggio J, Harner T (2015) Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler. Atmos Environ 112:289–293

    Article  CAS  Google Scholar 

  • Meire RO, Lee SC, Yao Y, Targino AC, Torres JPM, Harner T (2012) Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmos Environ 59:108–116. https://doi.org/10.1016/j.atmosenv.2012.05.018

    Article  CAS  Google Scholar 

  • Melymuk L, Robson M, Helm PA, Diamond ML (2011) Evaluation of passive air sampler calibrations: selection of sampling rates and implications for the measurement of persistent organic pollutants in air. Atmos Environ 45:1867–1875

    Article  CAS  Google Scholar 

  • Melymuk L, Bohlin P, Sáňka O, Pozo K, Klánová J (2014) Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability. Environ Sci Technol 48:14077–14091. https://doi.org/10.1021/es502164r

    Article  CAS  Google Scholar 

  • Miglioranza KSB, Ondarza PM, Costa PG, de Azevedo A, Gonzalez M, Shimabukuro VM, Grondona SI, Mitton FM, Barra RO, Wania F, Fillmann G (2021) Spatial and temporal distribution of persistent organic pollutants and current use pesticides in the atmosphere of Argentinean Patagonia. Chemosphere 266:129015. https://doi.org/10.1016/j.chemosphere.2020.129015

    Article  CAS  Google Scholar 

  • Millet M (2008) Sampling and analysis of pesticides in the atmosphere. In: Analysis of pesticides in food and environmental samples. USA: CRC Press

  • Moeckel C, Harner T, Nizzetto L, Strandberg B, Lindroth A, Jones KC (2009) Use of depuration compounds in passive air samplers: results from active sampling-supported field deployment, potential uses, and recommendations. Environ Sci Technol 43:3227–3232. https://doi.org/10.1021/es802897x

    Article  CAS  Google Scholar 

  • Mohseni-Moghadam M, Wolfe S, Dami I, Doohan D (2016) Response of wine grape cultivars to simulated drift rates of 2, 4-D, dicamba, and glyphosate, and 2, 4-D or dicamba plus glyphosate. Weed Technol 30:807–814

    Article  Google Scholar 

  • Monaco TJ, Weller SC, Ashton FM (2001) Weed science: principles and practices, 4th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Munjanja BK, Naudé Y, Forbes PBC (2020) A review of sampling approaches to off-target pesticide deposition. Trends Environ Anal Chem 25:e00075

    Article  CAS  Google Scholar 

  • Nascimento ALV, Pereira GAM, Pucci LF, Alves DP, Gomes CA, Reis MR (2020) Tolerance of cabbage crop to auxin herbicides. Planta Daninha 38:e020218387. https://doi.org/10.1590/s0100-83582020380100017

  • Neal RH, Teso RR, Younglove T, Sheeks DLIII (1991) Seasonal rainfall effects on pesticide leaching in Riverside, California. Environ Hazards Assess Progr 40

  • Nuckols J, Blain J, Beranger R et al (2019) Determinants of exposure to agricultural pesticide drift: science-based evidence and its application in environmental health studies. Environ Epidemiol 3:290–291

    Article  Google Scholar 

  • O’Connor-Marer PJ (2000) Safe and effective use of pesticides. Univ. Calif. Div. Agric. Nat., Oakland

  • Ockenden WA, Prest HF, Thomas GO, Sweetman A, Jones KC (1998) Passive air sampling for PCBs: field calculation of atmospheric sampling rates by triolein containing semi-permeable membrane devices. Environ Sci Technol 32:1538–1543

    Article  CAS  Google Scholar 

  • Ockenden WA, Corrigan BP, Howsam M, Jones KC (2001) Further developments in the use of semipermeable membrane devices as passive air samplers: application to PCBs. Environ Sci Technol 35:4536–4543. https://doi.org/10.1021/es0101126

    Article  CAS  Google Scholar 

  • OEC (2021) Trend Explorer. https://oec.world/

  • Okeme JO, Nguyen LV, Lorenzo M, Dhal S, Pico Y, Arrandale VH, Diamond ML (2018) Polydimethylsiloxane (silicone rubber) brooch as a personal passive air sampler for semi-volatile organic compounds. Chemosphere 208:1002–1007

    Article  CAS  Google Scholar 

  • Pankow JF (1991) Common y-intercept and single compound regression of gas-particle partitioning data vs. 1/T. Atmos Environ 25:2229–2239

    Article  Google Scholar 

  • Pankow JF, Bidleman TF (1991) Effects of temperature, TSP and per cent non-exchangeable material in determining the gas-particle partitioning of organic compounds. Atmos Environ Part A Gen Top 25:2241–2249

    Article  Google Scholar 

  • Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Front life Sci 9:110–118

    Article  CAS  Google Scholar 

  • Pattey E, Cessna AJ, Desjardins RL, Ken LA, Rochette P, St-Amour G, Zhu T, Headrick K (1995) Herbicides volatilization measured by the relaxed eddy-accumulation technique using two trapping media. Agric For Meteorol 76:201–220. https://doi.org/10.1016/0168-1923(95)02225-M

    Article  Google Scholar 

  • Peck AM, Hornbuckle KC (2005) Gas-phase concentrations of current-use pesticides in Iowa. Environ Sci Technol 39:2952–2959. https://doi.org/10.1021/es0486418

    Article  CAS  Google Scholar 

  • Peltonen K, Kuljukka T (1995) Air sampling and analysis of polycyclic aromatic hydrocarbons. J Chromatogr A 710:93–108. https://doi.org/10.1016/0021-9673(95)00207-4

    Article  CAS  Google Scholar 

  • Petty JD, Huckins JN, Zajicek JL (1993) Application of semipermeable membrane devices (SPMDs) as passive air samplers. Chemosphere 27:1609–1624

    Article  CAS  Google Scholar 

  • Petty JD, Orazio CE, Huckins JN, Gale RW, Lebo JA, Meadows JC, Echols KR, Cranor WL (2000) Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J Chromatogr A 879:83–95

    Article  CAS  Google Scholar 

  • Pozo K, Harner T, Wania F, Muir DCG, Jones KC, Barrie LA (2006) Toward a global network for persistent organic pollutants in air: results from the GAPS study. Environ Sci Technol 40:4867–4873. https://doi.org/10.1021/es060447t

    Article  CAS  Google Scholar 

  • Prest HF, Jacobson LA (1995) Passive sampling of water and coastal air via semipermeable membrane devices. Chemosphere 30:1351–1361

    Article  CAS  Google Scholar 

  • Reichman R, Yates SR, Skaggs TH, Rolston DE (2013) Effects of soil moisture on the diurnal pattern of pesticide emission: comparison of simulations with field measurements. Atmos Environ 66:52–62

    Article  CAS  Google Scholar 

  • Ronci L, Meccoli L, Iannilli V, Menegoni P, de Matthaeis E, Setini A (2016) Comparison between active and passive biomonitoring strategies for the assessment of genotoxicity and metal bioaccumulation in Echinogammarus veneris (Crustacea: Amphipoda). Ital J Zool 83:162–172

    Article  CAS  Google Scholar 

  • Rüdel H (1997) Volatilisation of pesticides from soil and plant surfaces. Chemosphere 35:143–152

    Article  Google Scholar 

  • Scheyer A, Graeff C, Morville S, Mirabel P, Millet M (2005) Analysis of some organochlorine pesticides in an urban atmosphere (Strasbourg, east of France). Chemosphere 58:1517–1524. https://doi.org/10.1016/j.chemosphere.2004.10.013

    Article  CAS  Google Scholar 

  • Schummer C, Tuduri L, Briand O, Appenzeller BM, Millet M (2012) Application of XAD-2 resin-based passive samplers and SPME-GC-MS/MS analysis for the monitoring of spatial and temporal variations of atmospheric pesticides in Luxembourg. Environ Pollut 170:88–94. https://doi.org/10.1016/j.envpol.2012.05.025

    Article  CAS  Google Scholar 

  • Shen L, Wania F, Lei YD, Teixeira C, Muir DCG, Bidleman TF (2005a) Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America. Environ Sci Technol 39:409–420. https://doi.org/10.1021/es049489c

    Article  CAS  Google Scholar 

  • Shen L, Wania F, Lei YD, Teixeira C, Muir DCG, Bidleman TF (2005b) atmospheric distribution and long-range transport behavior of organochlorine pesticides in North. America. 39:409–420. https://doi.org/10.1021/es049489c

    Article  CAS  Google Scholar 

  • Shoeib M, Harner T (2002) Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 36:4142–4151. https://doi.org/10.1021/es020635t

    Article  CAS  Google Scholar 

  • Shunthirasingham C, Oyiliagu CE, Cao X, Gouin T, Wania F, Lee SC, Pozo K, Harner T, Muir DCG (2010) Spatial and temporal pattern of pesticides in the global atmosphere. J Environ Monit 12:1650–1657. https://doi.org/10.1039/c0em00134a

    Article  CAS  Google Scholar 

  • Silva J, Heuser V, Andrade V (2003) Biomonitoramento Ambiental. In: Silva J, Erdtmann B, Henriques JAP (eds) Genética Toxicológica. Alcance, Porto Alegre

    Google Scholar 

  • Silva MM, Santos JB, Ferreira EA et al (2017) Plantas Forrageiras e Daninhas Sensíveis a Resíduos Atmosféricos de Clomazone. Planta Daninha 35:e017165078

    Google Scholar 

  • Silva-Barni MF, Gonzalez M, Wania F, Lei YD, Miglioranza KSB (2018) Spatial and temporal distribution of pesticides and PCBs in the atmosphere using XAD-resin based passive samplers: a case study in the Quequén Grande River watershed, Argentina. Atmos Pollut Res 9:238–245. https://doi.org/10.1016/j.apr.2017.09.008

    Article  CAS  Google Scholar 

  • Singer A, Crohn D (2002) Persistence and degradation of pesticides in composting. Organics 6

  • Spencer WF, Farmer WJ, Cliath MM (1973) Pesticide volatilization. Residue Rev Vol 49:1–40. https://doi.org/10.1007/978-1-4613-9377-1_1

    Article  CAS  Google Scholar 

  • Steckel L, Bond J, Ducar J et al (2017) The good and the bad and the ugly: dicamba observations of southern weed extension scientists. In: Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. North Central Weed Science Society, St Louis, pp 98–99

    Google Scholar 

  • Stevens PJG, Bukovac MJ (1987) Studies on octylphenoxy surfactants. Part 1: effects of oxyethylene content on properties of potential relevance to foliar absorption. Pestic Sci 20:19–35

    Article  CAS  Google Scholar 

  • Strandberg B, Julander A, Sjöström M, Lewné M, Koca Akdeva H, Bigert C (2018) Evaluation of polyurethane foam passive air sampler (PUF) as a tool for occupational PAH measurements. Chemosphere 190:35–42. https://doi.org/10.1016/j.chemosphere.2017.09.106

    Article  CAS  Google Scholar 

  • Takano HK, Junior RSO, Constantin J et al (2013) Efeito da adição do 2,4-D ao glyphosate para o controle de espécies de plantas daninhas de difícil controle. Rev Bras Herbic 12:1–13

    Google Scholar 

  • Tatton JOG, Ruzicka JHA (1967) Organochlorine pesticides in Antarctica. Nature 215:346–348

    Article  CAS  Google Scholar 

  • Taylor M, Lyons SM, Davie-Martin CL, Geoghegan TS, Hageman KJ (2020) Understanding trends in pesticide volatilization from agricultural fields using the pesticide loss via volatilization model. Environ Sci Technol 54:2202–2209. https://doi.org/10.1021/acs.est.9b04762

    Article  CAS  Google Scholar 

  • Tepper G (2012) Weather essentials for pesticide application. GRDC, Kingston

    Google Scholar 

  • Tiryaki O, Temur C (2010) The fate of pesticide in the environment. J Biol Environ Sci 4:29–38

    Google Scholar 

  • Tromp PC, Beeltje H, Okeme JO, Vermeulen R, Pronk A, Diamond ML (2019) Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design. Chemosphere 227:435–443. https://doi.org/10.1016/j.chemosphere.2019.04.043

    Article  CAS  Google Scholar 

  • Tuduri L, Harner T, Hung H (2006a) Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates. Environ Pollut 144:377–383

    Article  CAS  Google Scholar 

  • Tuduri L, Harner T, Hung H (2006b) Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates. Environ Pollut 144:377–383. https://doi.org/10.1016/j.envpol.2005.12.047

    Article  CAS  Google Scholar 

  • UNEP (2002) Stockholm Convention on Persistent Organic Pollutants. United Nations Environ, Progr

    Google Scholar 

  • van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, van der Linden AMA (1999) Emission of pesticides into the air. Water Air Soil Pollut 115:195–218

    Article  Google Scholar 

  • Van Dijk HFG, Guicherit R (1999) Atmospheric dispersion of current-use pesticides: a review of the evidence from monitoring studies. Water Air Soil Pollut 115:21–70. https://doi.org/10.1023/A:1005293020536

    Article  Google Scholar 

  • Vogel JR, Majewski MS, Capel PD (2008) Pesticides in rain in four agricultural watersheds in the United States. J Environ Qual 37:1101–1115. https://doi.org/10.2134/jeq2007.0079

    Article  CAS  Google Scholar 

  • Waite DT, Cessna AJ, Grover R, Kerr LA, Snihura AD (2002) Environmental concentrations of agricultural herbicides: 2, 4-D and triallate. J Environ Qual 31:129–144

    CAS  Google Scholar 

  • Wang Y, Wang S, Luo C, Li J, Ming L, Zhang G, Li X (2015) The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers. Environ Pollut 200:35–41. https://doi.org/10.1016/j.envpol.2015.01.037

    Article  CAS  Google Scholar 

  • Wang S, Steiniche T, Romanak KA, Johnson E, Quirós R, Mutegeki R, Wasserman MD, Venier M (2019) Atmospheric occurrence of legacy pesticides, current use pesticides, and flame retardants in and around protected areas in Costa Rica and Uganda. Environ Sci Technol 53:6171–6181. https://doi.org/10.1021/acs.est.9b00649

    Article  CAS  Google Scholar 

  • Wania F, Shen L, Teixeira C, Muir DCG (2003) Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. Environ Sci Technol 37:1352–1359

    Article  CAS  Google Scholar 

  • Waymann B, Rüdel H (1995) Influence of air velocity, application dose, and test area size on the volatilization of lindane. Int J Environ Anal Chem 58:371–378

    Article  CAS  Google Scholar 

  • Wehtje G (2008) Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol 22:679–684. https://doi.org/10.1614/WT-08-072.1

    Article  CAS  Google Scholar 

  • Werle R, Oliveira MC, Jhala AJ, et al (2018) Survey of Nebraska farmers’ adoption of dicamba-resistant soybean technology and dicamba Off-target movement. Weed Technol 1–8

  • White LM, Ernst WR, Julien G, Garron C, Leger M (2006) Ambient air concentrations of pesticides used in potato cultivation in Prince Edward Island, Canada. Pest Manag Sci 62:126–136. https://doi.org/10.1002/ps.1130

    Article  CAS  Google Scholar 

  • Willis GH, McDowell LL (1987) Pesticide persistence on foliage. Rev Environ Contam Toxicol 100:23–73

    CAS  Google Scholar 

  • Wittich KP, Siebers J (2002) Aerial short-range dispersion of volatilized pesticides from an area source. Int J Biometeorol 46:126–135. https://doi.org/10.1007/s00484-002-0125-3

    Article  Google Scholar 

  • Wolters A (2003) Pesticide volatilization from soil and plant surfaces: measurements at different scales versus model predictions. Aachen Technical University

  • Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24:17285–17325

    Article  CAS  Google Scholar 

  • Wu J (2020) Soil-Air partition coefficients of persistent organic pollutants decline from climate warming: a case study in Yantai County, Shandong Province. China Water Air Soil Pollut 231. https://doi.org/10.1007/s11270-020-04718-4

  • Yamasaki H, Kuwata K, Miyamoto H (1982) Effects of ambient-temperature on aspects of airborne polycyclic aromatic-hydrocarbons. Environ Sci Technol 16:189–194. https://doi.org/10.1021/es00098a003

    Article  CAS  Google Scholar 

  • Young BG, Farrell S, Bradley KW et al (2017) University research on dicamba volatility. In: Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. North Central Weed Science Society, St Louis, pp 200–101

    Google Scholar 

  • Yusà V, Coscollà C, Mellouki W, Pastor A, de la Guardia M (2009) Sampling and analysis of pesticides in ambient air. J Chromtography A 1216:2972–2983. https://doi.org/10.1016/j.chroma.2009.02.019

    Article  CAS  Google Scholar 

  • Zhang X, Wong C, Lei YD, Wania F (2012) Influence of sampler configuration on the uptake kinetics of a passive air sampler. Environ Sci Technol 46:397–403

    Article  CAS  Google Scholar 

  • Zuang Z, McConnell LL, Torrents A et al (2003) Atmospheric deposition of pesticides to an agricultural watershed of the Chesapeake Bay. J Environ Qual 32:1611–1622

    Article  Google Scholar 

Download references

Funding

National Council for Scientific and Technological Development (CNPq), for granting research productivity grants to the first, third, and fourth authors, process 306927/2019-5, 310805/2020-1 and 311720/2019-6, respectively.

Author information

Authors and Affiliations

Authors

Contributions

LB and EPK designed the content and logic of this review paper. LG, JBS, and GMB finished the first-hand manuscript, and VHVR, LG, LB, and RW revised this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leandro Galon.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galon, L., Bragagnolo, L., Korf, E.P. et al. Mobility and environmental monitoring of pesticides in the atmosphere — a review. Environ Sci Pollut Res 28, 32236–32255 (2021). https://doi.org/10.1007/s11356-021-14258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14258-x

Keywords

Navigation