Skip to main content

Advertisement

Log in

Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5–15% v/v), initial oil concentration (1500–3500 ppm), and NaCl concentration (0–30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box–Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables’ effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Abdelhay, A., Magnin, J. P., Gondrexon, N., Baup, S., & Willison, J. (2008). Optimization and modeling of phenanthrene degradation by Mycobacterium sp. 6PY1 in a biphasic medium using response-surface methodology. Applied Microbiology and Biotechnology, 78(5), 881–888, https://doi.org/10.1007/s00253-008-1365-x

  • Aksu, Z., & Bülbül, G. (1999). Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida beads. Enzyme and Microbial Technology, 25(3), 344–348, https://doi.org/10.1016/S0141-0229(99)00051-4

  • Al-Sayegh, A., Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., & Al-Bemani, A. (2016). Bioremediation of heavy crude oil contamination. The Open Biotechnology Journal, 10, 301–311. https://doi.org/10.2174/1874070701610010301

    Article  CAS  Google Scholar 

  • Alessandrello, M. J., Juárez Tomás, M. S., Raimondo, E. E., Vullo, D. L., & Ferrero, M. A. (2017). Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions. Marine Pollution Bulletin, 122(1), 156–160. https://doi.org/10.1016/j.marpolbul.2017.06.040

    Article  CAS  Google Scholar 

  • Ausheva, K. A., Goncharuk, D. A., Babusenko, E. S., Nekhaev, S. A., Sultygova, Z. S., & Markvichev, N. S. (2008). Development of a bacterial preparation based on immobilized cells. Theoretical Foundations of Chemical Engineering, 42(5), 767–773. https://doi.org/10.1134/S0040579508050503

  • Bhattacharya, M., Guchhait, S., Biswas, D., & Singh, R. (2019). Evaluation of a microbial consortium for crude oil spill bioremediation and its potential uses in enhanced oil recovery. Biocatalysis and Agricultural Biotechnology, 18, 101034. https://doi.org/10.1016/j.bcab.2019.101034

    Article  Google Scholar 

  • Bidja Abena, M. T., Sodbaatar, N., Li, T., Damdinsuren, N., Choidash, B., & Zhong, W. (2019). Crude oil biodegradation by newly isolated bacterial strains and their consortium under soil microcosm experiment. Applied Biochemistry and Biotechnology, 189(4), 1223–1244. https://doi.org/10.1007/s12010-019-03058-2

    Article  CAS  Google Scholar 

  • Chen, C.-H., Whang, L. M., Pan, C. L., Yang, C.-L., & Liu, P. W. (2017) Immobilization of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater International Biodeterioration & Biodegradation, 124. https://doi.org/10.1016/j.ibiod.2017.07.001

  • Chen, J., Wong, M. H., Wong, Y. S., & Tam, N. F. Y. (2008). Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Marine Pollution Bulletin, 57(6), 695–702, https://doi.org/10.1016/j.marpolbul.2008.03.013

  • Daâssi, D., Rodríguez-Couto, S., Nasri, M., & Mechichi, T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation, 90, 71–78. https://doi.org/10.1016/j.ibiod.2014.02.006

    Article  CAS  Google Scholar 

  • Dai, X., Lv, J., Yan, G., Chen, C., Guo, S., & Fu, P. (2020). Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresource Technology, 309, 123305. https://doi.org/10.1016/j.biortech.2020.123305

    Article  CAS  Google Scholar 

  • Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003

    Article  Google Scholar 

  • Etoumi, A. (2007). Microbial treatment of waxy crude oils for mitigation of wax precipitation. Journal of Petroleum Science and Engineering, 55(1), 111–121. https://doi.org/10.1016/j.petrol.2006.04.015

    Article  CAS  Google Scholar 

  • Farag, S., Soliman, N., & Abdel-Fattah, Y. (2018). Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48. Journal of Genetic Engineering and Biotechnology, 16. https://doi.org/10.1016/j.jgeb.2018.01.001

  • Ganesh Kumar, A., Nivedha Rajan, N., Kirubagaran, R., & Dharani, G. (2019). Biodegradation of crude oil using self-immobilized hydrocarbonoclastic deep sea bacterial consortium. Marine Pollution Bulletin, 146, 741–750. https://doi.org/10.1016/j.marpolbul.2019.07.006

  • Gavrilescu, M. (2010). Environmental biotechnology: achievements, opportunities and challenges. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 4.

  • Ghevariya, C. M., Bhatt, J. K., & Dave, B. P. (2011). Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using Response Surface Methodology. Bioresource Technology, 102(20), 9668–9674. https://doi.org/10.1016/j.biortech.2011.07.069

    Article  CAS  Google Scholar 

  • Hamoudi-Belarbi, L., Hamoudi, S., Belkacemi, K., Nouri, L., Bendifallah, L., & Khodja, M. (2018). Bioremediation of polluted soil sites with crude oil hydrocarbons using carrot peel waste. Environments, 5, 124. https://doi.org/10.3390/environments5110124

    Article  Google Scholar 

  • Han, J., Kim, H. S., Kim, I. C., Kim, S., Hwang, U. K., & Lee, J. S. (2017). Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp. Ecotoxicology and Environmental Safety, 145, 511–517. https://doi.org/10.1016/j.ecoenv.2017.07.065

    Article  CAS  Google Scholar 

  • Hao, R., & Lu, A. (2009). Biodegradation of heavy oils by halophilic bacterium. Progress in Natural Science, 19(8), 997–1001. https://doi.org/10.1016/j.pnsc.2008.11.010

    Article  CAS  Google Scholar 

  • Hoskeri, R. S., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatalysis and Agricultural Biotechnology, 3(4), 390–396. https://doi.org/10.1016/j.bcab.2014.03.001

    Article  Google Scholar 

  • Imron, M., & Titah, H. (2018). Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design. Environmental Engineering Research, 23, 374–382. https://doi.org/10.4491/eer.2018.015

    Article  Google Scholar 

  • Kazemzadeh, S., Naghavi, N. S., Emami-Karvani, Z., Fouladgar, M., & Emtiazi, G. (2020). Gas chromatography-mass spectrometry analyses of crude oil bioremediation by the novel Klebsiella variicola SKV2 immobilized in polyurethane polymer scaffold and two-layer microcapsulation. Bioremediation Journal, 24(2–3), 129–149. https://doi.org/10.1080/10889868.2020.1793722

    Article  CAS  Google Scholar 

  • Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A., & Kermanian, H. (2020). Investigation of Bacillus licheniformis in the biodegradation of Iranian heavy crude oil: A two-stage sequential approach containing factor-screening and optimization. Ecotoxicology and Environmental Safety, 205, 111103. https://doi.org/10.1016/j.ecoenv.2020.111103

    Article  CAS  Google Scholar 

  • Kok Kee, W., Hazaimeh, H., Mutalib, S. A., Abdullah, P. S., & Surif, S. (2015). Self-immobilised bacterial consortium culture as ready-to-use seed for crude oil bioremediation under various saline conditions and seawater. International Journal of Environmental Science and Technology, 12(7), 2253–2262. https://doi.org/10.1007/s13762-014-0619-7

    Article  CAS  Google Scholar 

  • Kuyukina, M. S., Ivshina, I. B., Kamenskikh, T. N., Bulicheva, M. V., & Stukova, G. I. (2013). Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency. International Biodeterioration & Biodegradation, 84, 118–125. https://doi.org/10.1016/j.ibiod.2012.05.035

  • Li, J., Guo, C., Lu, G., Yi, X., & Dang, Z. (2016). Bioremediation of petroleum-contaminated acid soil by a constructed bacterial consortium immobilized on sawdust: influences of multiple factors. Water, Air, & Soil Pollution, 227, 444. https://doi.org/10.1007/s11270-016-3117-3

    Article  CAS  Google Scholar 

  • Li, T., Deng, X., Wang, J., Chen, Y., He, L., Sun, Y., et al. (2014). Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium Bacillus licheniformis. Marine Pollution Bulletin, 89(1), 384–389. https://doi.org/10.1016/j.marpolbul.2014.09.028

    Article  CAS  Google Scholar 

  • Liang, Y., Zhang, X., Dai, D., & Li, G. (2009). Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation, 63(1), 80–87. https://doi.org/10.1016/j.ibiod.2008.07.005

    Article  CAS  Google Scholar 

  • Lin, M., Liu, Y., Chen, W., Wang, H., & Hu, X. (2014). Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. International Biodeterioration & Biodegradation, 88, 8–12. https://doi.org/10.1016/j.ibiod.2013.11.015

    Article  CAS  Google Scholar 

  • Liu, B., Ju, M., Liu, J., Wu, W., & Li, X. (2016). Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Marine Pollution Bulletin, 106(1–2), 301–307. https://doi.org/10.1016/j.marpolbul.2015.09.053

    Article  CAS  Google Scholar 

  • Lobakova, E., Vasilieva, S., Kashcheeva, P., Ivanova, E., Dolnikova, G., Chekanov, K., et al. (2016). New bio-hybrid materials for bioremoval of crude oil spills from marine waters. International Biodeterioration & Biodegradation, 108, 99–107. https://doi.org/10.1016/j.ibiod.2015.12.016

  • Maki, H., Hirayama, N., Hiwatari, T., Kohata, K., Uchiyama, H., Watanabe, M., et al. (2003). Crude oil bioremediation field experiment in the Sea of Japan. Marine Pollution Bulletin, 47(1), 74–77. https://doi.org/10.1016/S0025-326X(02)00412-5

    Article  CAS  Google Scholar 

  • Maqbool, F., Wang, Z., Xu, Y., Zhao, J., Gao, D., Zhao, Y. G., et al. (2012). Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, 237–238, 262-269. https://doi.org/10.1016/j.jhazmat.2012.08.038

  • Mohammed, A., A.B, F., & Anderson, J. (2009). Effect of salt concentration on the growth of heat stressed and unstressed Escherichia coli. Journal of Food Agriculture and Environment, 7, 51–54.

    Google Scholar 

  • Moustafa, Y. M. M. (2014). Enhancement of crude oil biodegradation by immobilizing of different bacterial strains on porous PVA hydrogels or combining of them with their produced biosurfactants. Journal of Petroleum & Environmental Biotechnology, 05. https://doi.org/10.4172/2157-7463.1000192

  • Nie, M., Nie, H., He, M., Lin, Y., Wang, L., Jin, P., et al. (2016). Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. Journal of environmental management, 173, 34–40. https://doi.org/10.1016/j.jenvman.2016.02.045

  • Nur Zaida, Z., & Tuah, P. M. (2018). Bioaugmentation of petroleum hydrocarbon in contaminated soil: a review. In V. Kumar, M. Kumar, & R. Prasad (Eds.), Microbial Action on Hydrocarbons. (pp. 415–439). Springer Singapore.

    Chapter  Google Scholar 

  • Oh, Y. S., Maeng, J., & Kim, S.-J. (2000). Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface. Applied Microbiology and Biotechnology, 54, 418–423,https://doi.org/10.1007/s002530000384

  • Partovinia, A., & Naeimpoor, F. (2013). Phenanthrene biodegradation by immobilized microbial consortium in polyvinyl alcohol cryogel beads. International Biodeterioration & Biodegradation, 85, 337–344. https://doi.org/10.1016/j.ibiod.2013.08.017

    Article  CAS  Google Scholar 

  • Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48(1), 1–38. https://doi.org/10.1080/10643389.2018.1439652

    Article  CAS  Google Scholar 

  • Partovinia, A., & Vatankhah, E. (2019). Experimental investigation into size and sphericity of alginate micro-beads produced by electrospraying technique: Operational condition optimization. Carbohydrate Polymers, 209, 389–399. https://doi.org/10.1016/j.carbpol.2019.01.019

    Article  CAS  Google Scholar 

  • Prapagdee, B., & Wankumpha, J. (2017). Phytoremediation of cadmium-polluted soil by Chlorophytum laxum combined with chitosan-immobilized cadmium-resistant bacteria. Environmental Science and Pollution Research, 24(23), 19249–19258. https://doi.org/10.1007/s11356-017-9591-3

    Article  CAS  Google Scholar 

  • Quek, E., Ting, Y.-P., & Tan, H. M. (2006). Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresource Technology, 97(1), 32–38. https://doi.org/10.1016/j.biortech.2005.02.031

  • Radwan, S. S., Al-Hasan, R. H., Salamah, S., & Al-Dabbous, S. (2002). Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. International Biodeterioration & Biodegradation, 50(1), 55–59. https://doi.org/10.2174/1874285801509010048

    Article  CAS  Google Scholar 

  • Rahman, K. S., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85(3), 257–261.

    Article  CAS  Google Scholar 

  • Ramírez, M., Arevalo, A., Sotomayor, S., & Bailón-Moscoso, N. (2017). Contamination by oil crude extraction - Refinement and their effects on human health. Environmental pollution (Barking, Essex : 1987), 231, 415–425. https://doi.org/10.1016/j.envpol.2017.08.017

  • Saez, J. M., Álvarez, A., Benimeli, C. S., & Amoroso, M. J. (2014). Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration & Biodegradation, 93, 63–69. https://doi.org/10.1016/j.ibiod.2014.05.013

    Article  CAS  Google Scholar 

  • Samhan, F., Elliethy, M., Hemdan, B., Youssef, M., & El-Taweel, G. (2017). Bioremediation of oil-contaminated water by bacterial consortium immobilized on environment-friendly biocarriers. Journal of Egyptian Public Health Association, 92(1), 44–51. https://doi.org/10.21608/EPX.2018.6649

    Article  Google Scholar 

  • Sharma, P., Singh, L., & Dilbaghi, N. (2009). Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design. Journal of Hazardous Materials, 164(2), 1024–1029. https://doi.org/10.1016/j.jhazmat.2008.08.104

    Article  CAS  Google Scholar 

  • Singh, R., Singh, P., & Sharma, R. (2014). Microorganism as a tool of bioremediation technology for cleaning environment: A review. Proceedings of the International Academy of Ecology and Environmental Sciences, 4, 1–6.

    CAS  Google Scholar 

  • Speight, J., & El-Gendy, N. (2018). Bioremediation of marine oil spills. In (pp. 419–470).

  • Steffan, S., Bardi, L., & Marzona, M. (2005). Azo dye biodegradation by microbial cultures immobilized in alginate beads. Environmental International, 31(2), 201–205. https://doi.org/10.1016/j.envint.2004.09.016

    Article  CAS  Google Scholar 

  • Swati, Ghosh, P., & Thakur, I. S. (2019). Biodegradation of pyrene by Pseudomonas sp. ISTPY2 isolated from landfill soil: Process optimisation using Box-Behnken design model. Bioresource Technology Reports, 8, 100329. https://doi.org/10.1016/j.biteb.2019.100329

  • Tao, K., Liu, X., Chen, X., Hu, X., Cao, L., & Yuan, X. (2017). Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresource Technology, 224, 327–332. https://doi.org/10.1016/j.biortech.2016.10.073

    Article  CAS  Google Scholar 

  • Tapia-Hernández, J. A., Torres-Chávez, P. I., Ramírez-Wong, B., Rascón-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C. G., et al. (2015). Micro- and nanoparticles by electrospray: Advances and applications in foods. Journal of Agricultural and Food Chemistry, 63(19), 4699–4707. https://doi.org/10.1021/acs.jafc.5b01403

    Article  CAS  Google Scholar 

  • Tsai, S.-L., Lin, C.-W., Wu, C.-H., & Shen, C.-M. (2013). Kinetics of xenobiotic biodegradation by the Pseudomonas sp. YATO411 strain in suspension and cell-immobilized beads. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 303–309. https://doi.org/10.1016/j.jtice.2012.11.004

  • Tuah, P. M., & Zahari, Z. (2018) Effectiveness of single and microbial consortium of locally isolated beneficial microorganisms (LIBeM) in bioaugmentation of oil sludge contaminated soil at different concentration levels: a laboratory scale Journal of Bioremediation & Biodegradation, 09. https://doi.org/10.4172/2155-6199.1000430

  • Villaverde, J., Rubio-Bellido, M., Merchan, F., & Morillo, E. (2016). Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. Journal of Environmental Management, 188, 379–386. https://doi.org/10.1016/j.jenvman.2016.12.020

    Article  CAS  Google Scholar 

  • Wang, B., Xu, X., Yao, X., Tang, H., & Ji, F. (2019). Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis and Pseudomonas stutzeri bacteria. Journal of Environmental Management, 249, 109388. https://doi.org/10.1016/j.jenvman.2019.109388

    Article  CAS  Google Scholar 

  • Wang, H. Q., Hua, F., Zhao, Y. C., Li, Y., & Wang, X. (2014). Immobilization of Pseudomonas sp. DG17 onto sodium alginate-attapulgite-calcium carbonate. Biotechnology, Biotechnological Equipment, 28(5), 834–842. https://doi.org/10.1080/13102818.2014.961123

  • Wang, Z.-Y., Xu, Y., Wang, H.-Y., Zhao, J., Gao, D.-M., Li, F.-M., et al. (2012). Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere, 22(5), 717–725. https://doi.org/10.1016/S1002-0160(12)60057-5

    Article  Google Scholar 

  • Wu, L., Ge, G., & Wan, J. (2009). Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. Journal of Environmental Sciences, 21(2), 237–242. https://doi.org/10.1016/S1001-0742(08)62257-3

    Article  CAS  Google Scholar 

  • Xia, W., Du, Z., Cui, Q., Dong, H., Wang, F., He, P. et al. (2014). Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 276, 489–498. https://doi.org/10.1016/j.jhazmat.2014.05.062

    Article  CAS  Google Scholar 

  • Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1-3), 395–401. https://doi.org/10.1016/j.jhazmat.2010.07.038

  • Zahed, M. A., Aziz, H. A., Isa, M. H., & Mohajeri, L. (2010). Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bulletin of Environment Contamination and Toxicology, 84(4), 438–442. https://doi.org/10.1007/s00128-010-9954-7

    Article  CAS  Google Scholar 

  • Zekri, A. Y., & Chaalal, O. (2005). Effect of temperature on biodegradation of crude oil. Energy Sources, 27(1–2), 233–244. https://doi.org/10.1080/00908310490448299

    Article  CAS  Google Scholar 

  • Zinjarde, S. S., & Pant, A. (2000). Crude oil degradation by free and immobilized cells of Yarrowia lipolytica NCIM 3589. Journal of Environmental Science and Health, Part A, 35(5), 755–763. https://doi.org/10.1080/10934520009377000

Download references

Acknowledgements

The authors gratefully acknowledge the Bioproducts and Biosystems Laboratories of Shahid Beheshti University, Zirab Campus, for providing the facilities and technical support.

Funding

This work was financially supported by Iranian Central Oil Fields Company (ICOFC) (Contract No. 81408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Partovinia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A. et al. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. Environ Monit Assess 193, 328 (2021). https://doi.org/10.1007/s10661-021-09104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09104-z

Keywords

Navigation