Skip to main content
Log in

Height of the Region of Intense Turbulent Heat Exchange in a Stably Stratified Boundary Layer of the Atmosphere. Part 2: Relationship with Surface Meteorological Parameters

  • ACOUSTOOPTICAL AND RADIOOPTICAL METHODS FOR ENVIRONMENTAL STUDIES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The second part of the paper is devoted to the analysis of how heights of intense turbulent exchange and their corresponding temperature gradients in the atmospheric boundary layer are interrelated with ground values of the wind velocity and vertical turbulent heat flow. We consider only cases of temperature inversions in winter (January–February 2020). The division of inversions into two types (ground and raised) and four forms is introduced and the statistic for the height of the turbulent exchange region is obtained for them. According to results of the analysis, a conclusion is made that the direct (well-defined) relation between the height of the intense turbulent heat exchange layer and ground values of the wind velocity and turbulent heat flow is absent under conditions of temperature inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Seibert, F. Beyrich, S. E. S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, “Review and intercomparison of operational methods for the determination of the mixing height,” Atmos. Environ. 34 (7), 1001–1027 (2000).

    Article  ADS  Google Scholar 

  2. M. Burlando, E. Georgieva, and C. F. Ratto, “Parameterisation of the planetary boundary layer for diagnostic wind models,” Bound.-Lay. Meteorol. 125 (2), 389–397 (2007).

    Article  ADS  Google Scholar 

  3. A. M. Holdsworth and A. H. Monahan, “Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget,” J. Atmos. Sci. 76 (5), 1307–1327 (2019).

    Article  ADS  Google Scholar 

  4. S. S. Zilitinkevich, S. A. Tyuryakov, Yu. I. Troitskaya, and E. A. Mareev, “Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary,” Izv., Atmos. Ocean. Phys. 48 (1), 133 (2012).

    Article  Google Scholar 

  5. V. P. Yushkov, M. M. Kurbatova, M. I. Varentsov, E. A. Lezina, G. A. Kurbatov, E. A. Miller, I. A. Repina, A. Yu. Artamonov, and M. A. Kallistratova, “Modeling an urban heat island during extreme frost in Moscow in January 2017,” Izv., Atmos. Ocean. Phys. 55 (5), 389–406 (2019).

    Article  Google Scholar 

  6. A. F. Kurbatskii and L. I. Kurbatskaya, “Investigation of a stable boundary layer using an explicit algebraic model of turbulence,” Thermophys. Aeromech. 26 (3), 335–350 (2019).

    Article  ADS  Google Scholar 

  7. L. I. Kurbatskaya and A. F. Kurbatskii, “Computationally efficient turbulence model for pollution propagation simulation,” Opt. Atmos. Okeana 30 (6), 524–528 (2017).

    Google Scholar 

  8. S. Argentini, G. Mastrantonio, and F. Lena, “Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy,” Bound.-Lay. Meteorol. 93 (2), 253–267 (1999).

    Article  ADS  Google Scholar 

  9. I. Pietroni, S. Argentini, I. Petenko, and R. Sozzi, “Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica,” Bound.-Lay. Meteorol. 143 (1), 189–206 (2012).

    Article  ADS  Google Scholar 

  10. M. Piringer, S. Joffre, A. Baklanov, A. Cristen, M. Deserti, K. De Ridder, S. Emeis, P. Mestayer, M. Tombrou, D. Middleton, K. Baumann-Stanzer, A. Dandou, A. Karppinen, and J. Burzynski, “The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715,” Bound.-Lay. Meteorol. 124 (1), 3–24 (2007).

    Article  ADS  Google Scholar 

  11. G. Sgouros, C. G. Helmis, and J. Degleris, “Development and application of an algorithm for the estimation of mixing height with the use of a SODAR-RASS remote sensing system,” Int. J. Remote Sens. 32 (22), 7297–7313 (2011).

    Article  ADS  Google Scholar 

  12. M. Kryza, A. Drzeniecka-Osiadacz, M. Werner, P. Netzel, and A. J. Dore, “Comparison of the WRF and sodar derived planetary boundary layer height,” Int. J. Environ. Pollut. 58 (1-2), 3–14 (2015).

    Article  Google Scholar 

  13. M. A. Lokoshchenko, “Dynamics of thermal turbulence in the lower atmosphere over moscow from sodar observations,” Rus. Meteorol. Hydrol., No. 2, 27–35 (2006).

  14. A. P. Kamardin, G. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 534–537 (2011).

    Google Scholar 

  15. H. Li, Y. Yang, X. M. Hu, Z. Huang, G. Wang, B. Zhang, and T. Zhang, “Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data,” J. Geophys. Res.: Atmos 122 (8), 4578–4593 (2017).

    Article  ADS  Google Scholar 

  16. I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Tech. 20 (8), 1092–1105 (2003).

    Article  Google Scholar 

  17. M. Tombrou, D. Founda, and D. Boucouvala, “Nocturnal bounary layer height prediction from surface routine meteorological data,” Meteorol. Atmos. Phys. 68 (3-4), 177–186 (1998).

    Article  ADS  Google Scholar 

  18. A. K. Georgoulias, D. K. Papanastasiou, D. Melas, V. Amiridis, and G. Alexandri, “Statistical analysis of boundary layer heights in a suburban environment,” Meteorol. Atmos. Phys. 104 (1-2), 103–111 (2009).

    Article  ADS  Google Scholar 

  19. S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, and I. V. Nevzorova, “Height of the region of intense turbulent heat exchange in a stably stratified atmospheric boundary layer: Part 1–Evaluation technique and statistics,” Atmos. Ocean. Opt. 34 (1), 34–44 (2021).

    Article  Google Scholar 

  20. A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler radar (sodar) VOLNA-4M-ST,” Pribory, No. 4, 37–44 (2017).

    Google Scholar 

  21. E. N. Kadygrov and I. N. Kuznetsova, Methodical Recommendations on the Use of Remote Microwave Profiler Measurements of Temperature Profiles in the Atmospheric Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].

  22. E. N. Kadygrov, ”Microwave radiometry of atmospheric boundary layer: Method, equipment, and applications,” Opt. Atmos. Okeana 22 (7), 697–704 (2009).

    Google Scholar 

  23. V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).

    Google Scholar 

  24. V. A. Gladkikh and S. L. Odintsov, “Turbulent heat flux in the near-ground layer of the atmosphere and its influence on the outer scale of turbulence,” Rus. Phys. J. 60 (6), 1064–1070 (2017).

    Article  Google Scholar 

  25. A. P. Kamardin, V. A. Gladkikh, V. P. Mamyshev, I. V. Nevzorova, S. L. Odintsov, and I. V. Trofimov, “Estimation of the height of intense turbulent heat exchange layer in the stably stratified atmospheric boundary layer,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, (2020).https://doi.org/10.1117/12.2574268

Download references

ACKNOWLEDGMENTS

The experimental data were obtained using the instrumentation of the “Atmosphere” Common Use Center of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences.

Funding

Atmosphere characteristics were measured with financial support from the Russian Science Foundation (project no. 19-71-20042). The development of methodical aspects of the performed investigations was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Odintsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.L., Gladkikh, V.A., Kamardin, A.P. et al. Height of the Region of Intense Turbulent Heat Exchange in a Stably Stratified Boundary Layer of the Atmosphere. Part 2: Relationship with Surface Meteorological Parameters. Atmos Ocean Opt 34, 117–127 (2021). https://doi.org/10.1134/S1024856021020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021020068

Keywords:

Navigation