Skip to main content
Log in

Air Pollution by Black Carbon in the Region of Wrangel Island: Comparison of Eurasian and American Sources and Their Contributions

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We analyzed the long-range atmospheric transport of black carbon (BC) in the region of Wrangel Island from June to August of 2015–2017. Trajectories of air mass motion were calculated using the HYSPLIT model available from http://www.ready.arl.noaa.gov. We used a simplified model of BC transport in the atmosphere based on the spatial distribution of the function of sensitivity to pollutant emissions. The information on the spatial locations of sources (anthropogenic genesis and wildfires) of BC emission to the atmosphere was taken from http://edgar.jrc.ec.europa.eu/overview.php?v=431 and http://www.globalfiredata.org, respectively. We compared the strengths, spatial locations, and interannual variations in BC emissions to the atmosphere from anthropogenic sources and wildfires during summer in the northeast of Eurasia and the northwest of North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Hirdman, H. Sodemann, S. Eckhardt, J. F. Burkhart, A. Jefferson, T. Mefford, P. K. Quinn, S. Sharma, J. Strom, and A. Stohl, “Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output,” Atmos. Chem. Phys. 10 (2), 669–693 (2010).

    Article  ADS  Google Scholar 

  2. M.-D. Cheng, “Geolocating Russian sources for Arctic black carbon,” Atmos. Environ. 92 (4), 398–410 (2014).

    Article  ADS  Google Scholar 

  3. V. F. Radionov, D. M. Kabanov, V. V. Pol’kin, S. M. Sakerin, and O. N. Izosimova, “Aerosol characteristics over the Arctic seas of Eurasia: Results of measurements in 2018 and average spatial distribution in the summer-autumn periods of 2007–2018,” Problemy Arktiki Antarktiki 65 (4), 405–421 (2019).

    Article  Google Scholar 

  4. J. Park, M. Dall’Osto, K. Park, Y. Gim, H. J. Kang, E. Jang, K.-T. Park, M. Park, S. S. Yum, J. Jung, B. Y. Lee, and Y. J. Yoon, “Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties,” Atmos. Chem. Phys. 20 (5), 5573–5590 (2020).

    Article  ADS  Google Scholar 

  5. T. Fukasawa, S. Ohta, N. Murao, S. Yamagata, and V. N. Makarov, “Aerosol observations in the Siberian Arctic,” Proc. NIPR Symp. Polar Meteorol. Glaciol. 11, 150–160 (1997).

  6. International Arctic Systems for Observing the Atmosphere. https://psl.noaa.gov/iasoa/. Cited October 5, 2020.

  7. A. A. Vinogradova and T. Ya. Ponomareva, “Atmospheric transport of anthropogenic impurities to the Russian Arctic (1986–2010),” Atmos. Ocean Opt. 25 (6), 414–422 (2012).

    Article  Google Scholar 

  8. A. Yu. Nedre, Yearbook on Pollutant Emissions in Air of Russian Cities and Regions for 2010 (SRI Atmosfera, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  9. http://www.msceast.org. Cited October 5, 2020.

  10. AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP) (Oslo, Norway, 2015).

  11. N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nojgaard, and H. Skov, “Wildfires in Northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16 (12), 7587–7604 (2016).

    Article  ADS  Google Scholar 

  12. http://www.arl.noaa.gov/ready/. Cited October 5, 2020.

  13. http://edgar.jrc.ec.europa.eu/overview.php?v=431. Cited October 5, 2020.

  14. http:// www.globalfiredata.org. Cited October 5, 2020.

  15. A. A. Vinogradova, “Distant evaluation of atmospheric pollution influence on the remote territories,” Geofiz. Protsessy Biosf. 13 (4), 5–20 (2014).

    Google Scholar 

  16. A. A. Vinogradova and Yu. A. Ivanova, “Air mass and pollution transport to the arctic Russian islands (1986–2016): Long-term, year to year, and seasonal variations,” Geofiz. Protsessy Biosf. 16 (4), 5–20 (2017).

    Google Scholar 

  17. A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).

    Article  Google Scholar 

  18. A. A. Vinogradova and A. V. Vasileva, “Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).

    Article  Google Scholar 

  19. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res.: Atmos. 118 (11), 5380–5552 (2013).

    Article  ADS  Google Scholar 

  20. A. A. Vinogradova and A. O. Veremeichik, “Model estimates of anthropogenic black carbon concentration in the Russian Arctic atmosphere,” Opt. Atmos. Okeana 26 (6), 443–451 (2013).

    Google Scholar 

  21. A. A. Vinogradova and T. B. Titkova, “Air temperature and black carbon concentration in the surface atmosphere near Tiksi, Yakutiya,” Geofiz. Protsessy Biosf. 18 (4), 15–21 (2019).

    Google Scholar 

  22. T. B. Zhuravleva, I. M. Nasrtdinov, and A. A. Vinogradova, “Direct radiative effects of smoke aerosol in the region of Tiksi station (Russian Arctic): Preliminary results,” Atmos. Ocean. Opt. 32 (3), 296–305 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-05-60 183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vinogradova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, A.A., Vasileva, A.V. & Ivanova, Y.A. Air Pollution by Black Carbon in the Region of Wrangel Island: Comparison of Eurasian and American Sources and Their Contributions. Atmos Ocean Opt 34, 97–103 (2021). https://doi.org/10.1134/S1024856021020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021020111

Keywords:

Navigation