Skip to main content
Log in

Towards Discovery of Ecological Inhibitor for Corrosion of Mild Steel in HCl Medium: trans-Anethole—the Molecule Responsible for Inhibitory Efficiency of Essential Oils Extracted from Leaves, Seeds, and Bulbs of Foeniculum vulgare

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The obtained results allowed to reveal the inhibition properties of the essential oils of Foeniculum vulgare and to identify the major molecule—trans-anethole that enters into their composition. In this work, an isolated molecule of trans-anethole was tested in order to confirm its responsibility for a high inhibition efficiency and to study its adsorption mechanism. The inhibition efficiency of this natural molecule was evaluated by using such techniques as electrochemical polarization, impedance spectroscopy, and weight loss measurements. A protective layer formed on the mild steel surface was analyzed by scanning electron microscopy. This study showed a maximal inhibitory efficiency at 1.0 × 10–3 M. The essential oils of Foeniculum vulgare were found to be a mixed type inhibitor that adsorbs on the metal surface by physisorption and is resistant to high temperatures. Finally, the results obtained allowed not only to determine the molecule responsible for a good anticorrosive activity of three oils extracted from three parts of Foeniculum vulgare, but also to obtain a new strong ecological inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Loto, R.T., Olukeye, T., and Okorie, E., Synergistic combination effect of clove essential oil extract with basil and atlas cedar oil on the corrosion inhibition of low carbon steel, S. Afr. J. Chem. Eng., 2019, vol. 30, p. 28.

    Google Scholar 

  2. Oyekunle, D.T., Oguntade, T.I., Ita, C.S., Ojo, T., et al., Corrosion inhibition of mild steel using binary mixture of sesame and castor oil in brine solution, Mater. Today Commun., 2019, vol. 21, p. 100691.

    Article  Google Scholar 

  3. Ostovari, A., Hoseinieh, S.M., Peikari, M., Shadizadeh, S.R., and Hashemi, S.J., Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, gallic acid, α-D-glucose and tannic acid), Corros. Sci., 2009, vol. 51, pp. 1935–1949.

    Article  Google Scholar 

  4. Abiola, O.K., Otaigbe, J.O.E., and Kio, O.J., Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution, Corros. Sci., 2009, vol. 51, p. 1879.

    Article  Google Scholar 

  5. Okafor, P.C., Osabor, V.I., and Ebenso, E.E., Eco-friendly corrosion inhibitors: inhibitive action of ethanol extracts of Garcinia kola for the corrosion of mild steel in H2SO4 solutions, Pigm. Res. Technol., 2007, vol. 35, p. 299.

    Article  Google Scholar 

  6. Okafor, P.C. and Ebenso, E.E., Furan and phenyl substituted triazolothiadiazine derivatives as copper corrosion inhibitors: electrochemical and DFT studies, Pigm. Res. Technol., 2007, vol. 36, p. 134.

    Article  Google Scholar 

  7. Ogan, A.U., The basic constituents of the leaves of Carica papaya, Phytochem. Rep., 1971, vol. 99, p. 441.

    Google Scholar 

  8. Okafor, P.C., Ikpi, M.E., Uwah, I.E., Ebenso, E.E., et al., Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media, Corros. Sci., 2008, vol. 50, p. 2310.

    Article  Google Scholar 

  9. Srivastava, K. and Srivastava, P., Studies on plant material as corrosion inhibitors, Br. Corros. J., 1981, vol. 16, p. 221.

    Article  Google Scholar 

  10. Rather, M.A., Dar Bilal, A., Sofi Shahnawaz, N., Bhat, B.A., et al., Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety, Arab. J. Chem., 2016, vol. 9, suppl. 2, p. S1574.

    Article  Google Scholar 

  11. Akhtar, I., Javad, S., Ansari, M., Ghaffar, N., et al., Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology, J. King Saud Univ., Sci., 2019, vol. 32, no. 2, p. 1451. https://doi.org/10.1016/j.jksus.2019.11.041

    Article  Google Scholar 

  12. El-Hajjaji, F., Messali, M., Aljuhani, A., Aouad, M.R., et al., Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies, J. Mol. Liq., 2018, vol. 249, p. 997.

    Article  Google Scholar 

  13. Bouoidina, A., Chaouch, M. Abdellaoui, A.F., Lahkimi, A., et al., Essential oil of Foeniculum vulgare: Antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium, Anti-Corros. Methods Mater., 2017, vol. 64, no. 5, p. 563.

    Article  Google Scholar 

  14. Bouoidina, A., El-Hajjaji, F., Abdellaoui, A., Rais, Z., et al., Theoretical and experimental study of the corrosion inhibition of mild steel in acid medium using some surfactants of the essential oil of Foeniculum vulgare bulb, J. Mater. Environ. Sci., 2017, vol. 8, no. 4, p. 1328.

    Google Scholar 

  15. Dagdag, O., El Harfi, A., El Gouri, M., Safi, Z., et al., Anticorrosive properties of hexa (3-methoxy propan-1,2-diol) cyclotri-phosphazene compound for carbon steel in 3% NaCl medium: Gravimetric, electrochemical, DFT and Monte Carlo simulation studies, Heliyon, 2019, vol. 5, no. 3, p. e01340.

    Article  Google Scholar 

  16. Bouoidina, A., El-Hajjaji, F., Drissi, M., Taleb, M., Hammouti, B., Ill-Min, C., Jodeh, S., and Lgaz, H., Towards a deeper understanding of the anticorrosive properties of hydrazine derivatives in acid medium: Experimental, DFT and MD simulation assessment, Metall. Mater. Trans. A, 2018, vol. 49, p. 5180.

    Article  Google Scholar 

  17. El-Hajjaji, F., Messali, M., Martinez de Yuso, M.V., Rodriguez-Castellon, E., et al., Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium, J. Colloid Interface Sci., 2019, vol. 541, p. 418.

    Article  Google Scholar 

  18. Bouoidina, A., El-Hajjaji, F., Emran, K., Belghiti, M.E, et al., Towards understanding the anticorrosive mechanism of novel surfactant based on Mentha pulegium oil as eco-friendly bio-source of mild steel in acid medium: a combined DFT and molecular dynamics investigation, Chem. Res. Chin. Univ., 2019, vol. 35, p. 6.

    Article  Google Scholar 

  19. Gualdron, A.F., Becerra, E.N., Pena, Dario, Y., Gutierrez, J.C., et al., Inhibitory effect of Eucalyptus and Lippia alba essential oils on the corrosion of mild steel in hydrochloric acid, J. Mater. Environ. Sci., 2013, vol. 4, no. 1, p. 143.

    Google Scholar 

  20. Bammou, L., Salghi, R., Zarrouk, A., Zarrok, H., et al., Inhibition effect of natural Junipers extract towards steel corrosion in HCl solution, Int. J. Electrochem. Sci., 2012, vol. 7, p. 8974.

    Google Scholar 

  21. Amar, H., Tounsi, A., Makayssi, A., Derja, A., et al., Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media, Corros. Sci., 2007, vol. 49, p. 2936.

    Article  Google Scholar 

  22. Jafari, H., Akbarzade, K., and Danaee, I., Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives, Arab. J. Chem., 2019, vol. 12, no. 7, p. 1387.

    Article  Google Scholar 

  23. Karthik, G. and Sundaravadivelu, M., Studies on the inhibition of mild steel corrosion in hydrochloric acid solution by atenolol drug, Egypt. J. Petrol., 2016, vol. 25, no. 2, p. 183.

    Article  Google Scholar 

  24. Ouakki, M., Galai, M., Rbaa, M., Abousalem, A.S., et al., Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium, Heliyon, 2019, vol. 5, p. e02759.

    Article  Google Scholar 

  25. Sigircik, G., Tuken, T., and Erbil, M., Assessment of the inhibition efficiency of 3,4-diaminobenzonitrile against the corrosion of steel, Corros. Sci., 2016, vol. 102, p. 437.

    Article  Google Scholar 

  26. Ribeiro, D.V., Souza, C.A.C., and Abrantes, J.C.C., Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete, Rev. IBRACON Estruturas Mater., 2015, vol. 8, no. 4, p. 529.

    Article  Google Scholar 

  27. Sherif El-S.M., Erasmus, R.M., and Comins, J.D., Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions, J. Colloid Interface Sci., 2007, vol. 311, p. 144.

    Article  Google Scholar 

  28. Li, L.L., Mo, S., Qun, L.H., Jun, F.Y., et al., Relationship between inhibition performance of melamine derivatives and molecular structure for mild steel in acid solution, Corros. Sci., 2017, vol. 124, p. 167, https://doi.org/10.1016/j.corsci.2017.05.020

    Article  Google Scholar 

  29. Garai, S., Jaisankar, P., Singh, J.K., and Elango, A., A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution, Corros. Sci., 2012, vol. 60, p. 193.

    Article  Google Scholar 

  30. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 1917, vol. 39, p. 1848.

    Article  Google Scholar 

  31. Rahmani, H., Alaoui, K.I., M. Emran, K., El Hallaoui, A., Taleb, M., El Hajji, S., Labriti, B., Ech-chihbi, E., Hammouti, B., and El-Hajjaji, F., Experimental and DFT investigation on the corrosion inhibition of mild steel by 1,2,3-triazole regioisomers in 1 M hydrochloric acid solution, Int. J. Electrochem. Sci., 2019, vol. 14, p. 985.

    Article  Google Scholar 

  32. El Azzouzi, M., Aouniti, A., Tighadouin, S., Elmsellem, H., et al., Some hydrazine derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Weight loss, electrochemichal, SEM and theoretical studies, J. Mol. Liq., 2016, vol. 221, p. 633. https://doi.org/10.1016/j.molliq.2016.06.007

    Article  Google Scholar 

  33. Kowsari, E., Payami, M., Amini, R., Ramezanzadeh, B., et al., Task-specific ionic liquid as a new green inhibitor of mild steel corrosion, Appl. Surf. Sci., 2014, vol. 289, p. 478.

    Article  Google Scholar 

  34. Obot, I.B., Umoren, S.A., Gasem, Z.M., Suleiman, R., et al., Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl, J. Ind. Eng. Chem., 2015, vol. 21, p. e1328.

    Article  Google Scholar 

  35. El Hajjaji, F., Abrigach, F., Hamed, O., Rasem, H.A., et al., Corrosion resistance of mild steel coated with organic material containing pyrazol moiety, Coatings, 2018, vol. 8, p. 330.

    Article  Google Scholar 

  36. Fragoza-Mar, L., Olivares-Xometl, O., Domínguez-Aguilar, M.A., Flores, E.A., et al., Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution, Corros. Sci., 2012, vol. 61, p. 171.

    Article  Google Scholar 

  37. Bouhrira, K., Ouahiba, F., and Zerouali, D., The inhibitive effect of 2-phenyl-3-nitroso-imidazo [1,2-a]pyridine on the corrosion of steel in 0.5 M HCl acid solution, Eur. J. Chem., 2010, vol. 7, p. 35.

    Google Scholar 

  38. Ech-chihbi, E., Belghiti, M.E., Salim, R., Oudda, H., et al., Experimental and computational studies on the inhibition performance of the organic compound “2‑phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution, Surf. Interfaces, 2017, vol. 9, p. 206.

    Article  Google Scholar 

  39. Ouakki, M., Rbaa, M., Galai, M., Lakhrissi, B., Rifi, E.H., and Cherkaoui, M., Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid, Journal of Bio- and Tribo-Corrosion., 2018, vol. 4, p. 35. https://doi.org/10.1007/s40735-018-0151-2

  40. Soltani, N., Behpour, M., Ghoreishi, S.M., and Naeimi, H., Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases, Corros. Sci., 2010, vol. 52, pp. 1351–1361.

    Article  Google Scholar 

  41. Gutierrez, E., Rodriguez, J., Cruz-Borbolla, J., Alvarado-Rodriguez, J., and Thangarasu, P., Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives, Corros. Sci., 2016, vol. 108, p. 23. https://doi.org/10.1016/j.corsci.2016.02.036

    Article  Google Scholar 

  42. Kumar, D., Jain, V., and Rai, B., Unravelling the mechanisms of corrosion inhibition of iron by henna extract: A density functional theory study, Corros. Sci., 2018, vol. 142, p. 102. https://doi.org/10.1016/j.corsci.2018.07.011

  43. Ech-chihbi, E., Nahle, A., Salim, R., Oudda, H., et al., An investigation into quantum chemistry and experimental evaluation of imidazopyridine derivatives as corrosion inhibitors for C-steel in acidic media, Journal of Bio- and Tribo-Corrosion, 2019, vol. 5, p. 24.

    Book  Google Scholar 

  44. Lukovits, I., Kalman, E., and Zucchi, F., Corrosion inhibitors-correlation between electronic structure and efficiency, Corrosion, 2001, vol. 57, p. 3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nahlé.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouoidina, A., El-Hajjaji, F., Ech-chihbi, E. et al. Towards Discovery of Ecological Inhibitor for Corrosion of Mild Steel in HCl Medium: trans-Anethole—the Molecule Responsible for Inhibitory Efficiency of Essential Oils Extracted from Leaves, Seeds, and Bulbs of Foeniculum vulgare . Surf. Engin. Appl.Electrochem. 57, 255–267 (2021). https://doi.org/10.3103/S1068375521020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521020022

Keywords:

Navigation