Skip to main content
Log in

Experimental, Density Functional Theory, and Dynamic Molecular Studies of Imidazopyridine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two imidazopyridine derivatives 6-chloro-2-(4-chlorophenyl) imidazo [1,2-a]pyridine (IPCl1) and 6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-carbal-dehyde (IPCl2) were investigated as corrosion inhibitors of mild steel in 1.0M HCl medium using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The concentrations used in this work ranged between 1.0 × 10–6 and 1.0 × 10–3 M. Those compounds were found to be good inhibitors. In addition, their adsorption on the mild steel surface obeyed the Langmuir adsorption isotherm. A quantum chemical calculation was computed using Gaussian 09 based on the density-functional theory method at B3LYP/6-31G (d, p) in order to relate some electronic properties of the studied compounds to the inhibition efficiencies achieved experimentally. The Fukui functions were calculated to estimate the most reactive sites of nucleophilic and electrophilic attacks. Finally, the molecular dynamics simulation was implemented to search for the equilibrium configurations of IPCl1 and IPCl2/Fe(110) adsorption systems in a hydrochloric acid solution at various temperatures. The theoretical and experimental results obtained were in good correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Yildiz, R., An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions, Corros. Sci., 2015, vol. 90, p. 544.

    Article  Google Scholar 

  2. Galai, M., Rbaa, M., El Kacimi, Y., Ouakki, M., et al., Anti-corrosion properties of some triphenylimidazole substituted compounds in corrosion inhibition of carbon steel in 1.0 M hydrochloric acid solution, Anal. Bioanal. Electrochem., 2017, vol. 9, no. 1, p. 80.

    Google Scholar 

  3. Shaban, S.M., Abd-Elaal, A.A., and Tawfik, S.M., Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution, J. Mol. Liq., 2016, vol. 216, p. 392.

    Article  Google Scholar 

  4. Zarrok, H., Al-Deyab, S.S., Zarrouk, A., Salghi, R., et al., Thermodynamic characterisation and density functional theory investigation of 1,1',5,5'-tetramethyl-1H,1'H-3,3-bipyrazole as corrosion inhibitor of C38 steel corrosion in HCl, Int. J. Electrochem. Sci., 2012, vol. 7, p. 4047.

    Google Scholar 

  5. Hu, Q., Qiu, Y., Zhang, G., and Guo, X., Capsella bursa-pastoris extract as an eco-friendly inhibitor on the corrosion of Q235 carbon steels in 1 mol L−1 hydrochloric acid, Chin. J. Chem. Eng., 2015, vol. 23, p. 1408.

    Article  Google Scholar 

  6. Hayaoui, M., Drissi, M., Fahim, M., Salim, R., et al., Benzenamine derivative as corrosion inhibitor of carbon steel in hydrochloric acid solution: electrochemical and theoretical studies, J. Mater. Environ. Sci., 2017, vol. 8, no. 5, p. 1877.

    Google Scholar 

  7. Shahabi, S., Norouzi, P., and Ganjali, M.R., Theoretical and electrochemical study of carbon steel corrosion inhibition in the presence of two synthesized Schiff base inhibitors: Application of fast Fourier transform continuous cyclic voltammetry to study the adsorption behavior, Int. J. Electrochem. Sci., 2015, vol. 10, p. 2646.

    Google Scholar 

  8. Nazeer, A.A. and Madkour, M., Potential use of smart coatings for corrosion protection of metals and alloys: a review, J. Mol. Liq., 2018, vol. 253, p. 11.

    Article  Google Scholar 

  9. Bouoidina, A., Chaouch, M., Abdellaoui, A., Lahkimi, A., et al., Essential oil of “Foeniculum vulgare”: Antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium, Anti-Corros. Methods Mater., 2017, vol. 64, no. 5, p. 563.

    Article  Google Scholar 

  10. Li, G.Y., Jung, K.H., Lee, H., Son, M.K., et al., A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway, Cancer Lett., 2013, vol. 329, p. 59.

    Article  Google Scholar 

  11. Yun, S.M., Jung, K.H., Lee, H., Son, M.K., et al., Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells, Cancer Lett., 2013, vol. 331, p. 250.

  12. Poorfreidoni, A. and Ranjbar-Karimi, R., Synthesis of substituted imidazopyridines from perfluorinated pyridine derivatives, Tetrahedron Lett., 2016, vol. 57, p. 5781.

    Article  Google Scholar 

  13. Liu, C., Chen, Q., Yang, M., and Schneller, S.W., C-3 halo and 3-methyl substituted 5'-nor-3-deazaaristeromycins: synthesis and antiviral properties, Bioorg. Med. Chem., 2013, vol. 21, p. 359.

    Article  Google Scholar 

  14. Jose, G., Suresha Kumara, T.H., Nagendrappa, G., Sowmya, H.B.V., Jasinski, J.P., Millikan, S.P., Chandrika, N., More, S.S., and Harish, B.G., New polyfunctional imidazo[4,5-C]pyridine motifs: Synthesis, crystal studies, docking studies and antimicrobial evaluation, Eur. J. Med. Chem., 2014, vol. 77, p. 288.

    Article  Google Scholar 

  15. Li, C., Chen, L., Steinhuebel, D., and Goodman, A., Rapid construction of imidazopyridines from ortho-haloaminopyridines, Tetrahedron Lett., 2016, vol. 57, p. 2708.

    Article  Google Scholar 

  16. Grädler, U., Fuchß, T., Ulrich, W.R., Boer, R., Strub, A., Hesslinger, C., Anézo, C., Diederichs, K., and Zaliani, A., Novel nanomolar imidazo[4,5-b]pyridines as selective nitric oxide synthase (iNOS) inhibitors: SAR and structural insights, Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 14, p. 4228.

    Article  Google Scholar 

  17. Domingues, M., Casaril, A.M., Birmann, P.T., Lourenco, D.A., et al., Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators, Front. Neurosci., 2018, vol. 12, p. 486.

    Article  Google Scholar 

  18. Devi, N., Jana, A.K., and Singh, V., Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents, Karbala Int. J. Mod. Sci., 2018, vol. 4, no. 1, p. 164.

    Article  Google Scholar 

  19. Ghazoui, A., Saddik, R., Hammouti, B., Zarrouk, A., et al., Inhibitive effect of imidazopyridine derivative towards corrosion of C38 steel in hydrochloric acid solution, Res. Chem. Intermed., 2013, vol. 39, p. 2369.

    Article  Google Scholar 

  20. Salghi, R., Anejjar, A., Benali, O., Al-Deyab, S.S., et al., Inhibition effect of 3-bromo-2-phenylimidazol[1,2-α]pyridine towards C38 steel corrosion in 0.5 M H2SO4 solution, Int. J. Electrochem. Sci., 2014, vol. 9, p. 3087.

    Google Scholar 

  21. Yadav, M., Behera, D., and Kumar, S., Experimental and theoretical investigation on adsorption and corrosion inhibition properties of imidazopyridine derivatives on mild steel in hydrochloric acid solution, Surf. Interface Anal., 2014, vol. 46, no. 9, p. 640.

    Article  Google Scholar 

  22. Salim, R., Elaatiaoui, A., Benchat, N., Ech-chihbi, E., et al., Corrosion behavior of a smart inhibitor in hydrochloric acid molar: experimental and theoretical studies, J. Mater. Environ. Sci., 2017, vol. 8, no. 10, p. 3747.

    Google Scholar 

  23. Salim, R., Ech-chihbi, E., Oudda, H., El Hajjaji, F., Taleb, M., and Jodeh, S., A review on the assessment of imidazo[1,2-α]pyridines as corrosion inhibitor of metals, J. Bio- Tribo-Corros., 2019, vol. 5, p. 14. https://doi.org/10.1007/s40735-018-0207-3

  24. Nahle, A., El-Hajjaji, F., Ghazoui, A., Benchat, N., Taleb, M., Saddik, R., Elaatiaoui, A., Koudad, M., and Hammouti, B., Effect of substituted methyl group by phenyl group in pyridazine ring on the corrosion inhibition of mild steel in 1.0 M HCl, Anti-Corros. Methods Mater., 2018, vol. 65, no. 1, p. 87.

    Article  Google Scholar 

  25. Zarrouk, A., Zarrok, H., Ramli, Y., Bouachrine, M., et al., Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution, J. Mol. Liq., 2016, vol. 222, p. 239.

    Article  Google Scholar 

  26. Zarrouk, A., Hammouti, B., Dafali, A., Bouachrine, M., et al., A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid, J. Saudi Chem. Soc., 2014, vol. 18, p. 450.

    Article  Google Scholar 

  27. El Faydy, M., Touir, R., Ebn Touhami, M., Zarrouk, A., et al., Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: Experimental, DFT and Monte Carlo simulation studies, Phys. Chem. Chem. Phys., 2018, vol. 20, no. 30, p. 20167.

    Article  Google Scholar 

  28. Singh, A., Ansari, K.R., Kumar, A., Liu, W., et al., Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment, J. Alloys Compd., 2017, vol. 712, p. 121.

    Article  Google Scholar 

  29. Alaoui, K., Touir, R., Galai, M., Serrar, H., et al., Electrochemical and computational studies of some triazepine carboxylate compounds as acid corrosion inhibitors for mild steel, J. Bio- Tribo-Corros., 2018, vol. 4, p. 37.

    Book  Google Scholar 

  30. Materials Studio, Revision 8.0, San Diego: Accelrys, 2016.

  31. Khaled, K.F. and Amin, M.A., Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives—Molecular dynamics, chemical and electrochemical studies, Corros. Sci., 2009, vol. 51, p. 1964.

    Article  Google Scholar 

  32. Rbaa, M., Benhiba, F., Obot, I.B., Oudda, H., et al., Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: synthesis, electrochemical, surface morphological, UV-visible and theoretical studies, J. Mol. Liq., 2019, vol. 276, p. 120.

    Article  Google Scholar 

  33. Sun, H., COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds, J. Phys. Chem. B, 1998, vol. 102, p. 7338.

    Article  Google Scholar 

  34. Saha, S.K., Ghosh, P., Hens, A., Murmu, N.C., et al., Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor, Phys. E (Amsterdam), 2015, vol. 66, p. 332.

    Article  Google Scholar 

  35. Ech-chihbi, E., Belghiti, M.E., Salim, R., Oudda, H., et al., Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution, Surf. Interfaces, 2017, vol. 9, p. 206.

    Article  Google Scholar 

  36. Markhali B.P., Naderi R., Mahdavian M., Sayebani M., et al., Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media, Corros. Sci., 2013, vol. 75, p. 269.

    Article  Google Scholar 

  37. Khattabi, M., Benhiba, F., Tabti, S., Djedouani, A., et al., Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl, J. Mol. Struct., 2018, vol. 1196, p. 231.

    Article  Google Scholar 

  38. El-Hajjaji, F., Messali, F.M., Aljuhani, A., Aouad, M.R., Hammouti, B., Belghiti, M.E., Chauhan, D.S., and Quraishi, M.A., Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: Electrochemical and molecular dynamics simulation studies, J. Mol. Liq., 2018, vol. 249, p. 997.

    Article  Google Scholar 

  39. Ribeiro, D.V., and Abrantes, J.C.C., Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach, Constr. Build. Mater., 2016, vol. 111, p. 98.

    Article  Google Scholar 

  40. Haruna, K., Saleh, T.A., Obot, I.B., and Umoren, S.A., Cyclodextrin-based functionalized graphene oxide as an effective corrosion inhibitor for carbon steel in acidic environment, Prog. Org. Coat., 2019, vol. 128, p. 157.

    Article  Google Scholar 

  41. Galai, M., El Faydy, M., El Kacimi, Y., Dahmani, K., et al., Synthesis, characterization and anti-corrosion properties of novel quinolinol on C-steel in a molar hydrochloric acid solution, Port. Electrochim. Acta, 2017, vol. 35, no. 4, p. 233.

    Article  Google Scholar 

  42. Verma, C., Quraishi, M.A., Obot, I.B., and Ebenso, E.E., Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: Computer modeling supported experimental studies, J. Mol. Liq., 2019, vol. 287, p. 110972.

    Article  Google Scholar 

  43. Hamani, H., Douadi, T., Al-Noaimi, M., Issaadi, S., et al., Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid, Corros. Sci., 2014, vol. 88, p. 234.

    Article  Google Scholar 

  44. Wang, C., Chen, J., Han, J., Wang, C., and Hu, B., Enhanced corrosion inhibition performance of novel modified polyaspartic acid on carbon steel in HCl solution, J. Alloys Compd., 2019, vol. 771, p. 736.

    Article  Google Scholar 

  45. Verma, C., Quraishi, M.A., and Singh, A., 5-Substituted 1H-tetrazoles as effective corrosion inhibitors for mild steel in 1 M hydrochloric acid, J. Taibah Univ. Sci., 2016, vol. 10, p. 718.

    Article  Google Scholar 

  46. El Faydy, M., Galai, M., El Assyry, A., Tazouti, A., et al., Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution, J. Mol. Liq., 2016, vol. 219, p. 396.

    Article  Google Scholar 

  47. Tayebi, H., Bourazmi, H., Himmi, B., El Assyry, A., et al., An electrochemical and theoretical evaluation of new quinoline derivative as a corrosion inhibitor for carbon steel in HCl solutions, Pharm. Lett., 2014, vol. 6, no. 6, p. 20.

    Google Scholar 

  48. Ozdemir, C.S. and Onal, Y., Study to observe the applicability of the adsorption isotherms used for the adsorption of medicine organics onto activated carbon, Part. Sci. Technol., 2016, vol. 36, no. 2, p. 254.

    Article  Google Scholar 

  49. Rahiman, A.F.S.A. and Sethumanickam, S., Corrosion inhibition, adsorption and thermodynamic properties of poly (vinyl alcohol-cysteine) in molar HCl, Arab. J. Chem., 2017, vol. 10, p. 53358.

    Google Scholar 

  50. El-Hajjaji, F., Messali, M., Martínez de Yuso, M.V., Rodríguez-Castellón, E., Almutairi, S., Bandosz Teresa, J., and Algarra, M., Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium, J. Colloid Interface Sci., 2019, vol. 541, p. 418.

    Article  Google Scholar 

  51. Ismaily, A.K., Ouazzani, F., Kandrirodi, Y., Azaroual, A.M., et al., Effect of some benzimidazolone compounds on C38 steel corrosion in hydrochloric acid solution, J. Mater. Environ. Sci., 2016, vol. 7, no. 1, p. 244.

    Google Scholar 

  52. Deyab, M.A. and Abd El-Rehim, S.S., Influence of polyethylene glycols on the corrosion inhibition of carbon steel in butyric acid solution: weight loss, EIS and theoretical studies, Int. J. Electrochem. Sci., 2013, vol. 8, no. 12, p. 12613.

    Google Scholar 

  53. El Hajjaji, F., Abrigach, F., Hamed, O., Hasan, A.R., et al., Corrosion resistance of mild steel coated with organic material containing pyrazol moiety, Coatings, 2018, vol. 8, no. 10, p. 330.

    Article  Google Scholar 

  54. ElBelghiti, M., Karzazi, Y., Dafali, A., Hammouti, B., et al., Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium, J. Mol. Liq., 2016, vol. 218, p. 281.

    Article  Google Scholar 

  55. Ouakki, M., Rbaa, M., Galai, M., Lakhrissi, B., Rifi, E.H., and Cherkaoui, M., Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid, J. Bio- Tribo-Corros., 2018, vol. 4, p. 35.

    Book  Google Scholar 

  56. Ech-chihbi, E., Nahle, N., Salim, R., Oudda, H., et al., An investigation into quantum chemistry and experimental evaluation of imidazopyridine derivatives as corrosion inhibitors for C-steel in acidic media, J. Bio- Tribo-Corros., 2019, vol. 5, p. 24.

    Book  Google Scholar 

  57. Saady, A., El-Hajjaji, F., Taleb, M., Ismaily Alaoui, K., et al., Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new Indanones derivatives, Mater. Discovery, 2019, vol. 12, p. 30.

    Article  Google Scholar 

  58. Bedair, M.A., The effect of structure parameters on the corrosion inhibition effect of some heterocyclic nitrogen organic compounds, J. Mol. Liq., 2016, vol. 219, p. 128.

    Article  Google Scholar 

  59. Armakovic, S., Armakovic, S.J., Vranes, M., Tot, A., and Gadzuric, S., Determination of reactive properties of 1-butyl-3-methylimidazolium taurate ionic liquid employing DFT calculations, J. Mol. Liq., 2016, vol. 222, p. 796.

    Article  Google Scholar 

  60. van Gunsteren, W.F. and Berendsen, H.J.C., Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry, Angew. Chem., Int. Ed., 1990, vol. 29, p. 992.

    Article  Google Scholar 

  61. Hsissou, R., Dagdag, O., About, S., Benhiba, F., et al., Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods, J. Mol. Liq., 2019, vol. 284, p. 182.

    Article  Google Scholar 

  62. Rouifi, Z., Benhiba, F., El Faydy, M., Laabaissi, T., et al., Performance and computational studies of new soluble triazole as corrosion inhibitor for carbon steel in HCl, Chem. Data Collect., 2019, vol. 22, p. 100242.

    Article  Google Scholar 

  63. Tang, Y., Yang, X., Yang, W., Chen, Y., et al., Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole, Corros. Sci., 2010, vol. 52, p. 242.

    Article  Google Scholar 

  64. Obot, I., Obi-Egbedi, N., Ebenso, E.E., Afolabi, A., et al., Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo [5,4-f][1,10]phenanthroline on mild steel, Res. Chem. Intermed., 2013, vol. 39, p. 1927.

    Article  Google Scholar 

  65. Kaya, S., Guo, L., Kaya, C., Tuzun, B., Obot, I.B., Touir, R., and Islam, N., Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron, J. Taiwan Inst. Chem. Eng., 2016, vol. 65, p. 522.

    Article  Google Scholar 

  66. Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K., et al., Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corros. Sci., 2017, vol. 114, p. 133.

    Article  Google Scholar 

  67. Kokalj, A., Comments on the “Reply to comments on the paper ‘On the nature of inhibition performance of imidazole on iron surface’” by J.O. Mendes and A.B. Rocha, Corros. Sci., 2013, vol. 70, p. 294.

    Article  Google Scholar 

  68. Liu, A., Ren, X., Zhang, J., Wang, C., et al., Theoretical and experimental studies of the corrosion inhibition effect of nitrotetrazolium blue chloride on copper in 0.1 M H2SO4, RSC Adv., 2014, vol. 4, p. 40606.

    Article  Google Scholar 

  69. Zhang, D., Tang, Y., Qi, S., Dong, D., et al., The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl, Corros. Sci., 2016, vol. 102, p. 517.

    Article  Google Scholar 

  70. Naeiji, P., Varaminian, F., and Rahmati, M., Comparison of the thermodynamic, structural and dynamical properties of methane/water and methane/water/hydrate systems using molecular dynamic simulations, J. Nat. Gas Sci. Eng., 2017, vol. 44, p. 122.

    Article  Google Scholar 

  71. Bhaskar, V., Chowdary, R., Dixit, S.R., and Joshi, S.D., Synthesis, molecular modeling and BACE-1 inhibitory study of tetrahydrobenzo[b]pyran derivatives, Bioorg. Chem., 2019, vol. 84, p. 202.

    Article  Google Scholar 

  72. Xie, S.W., Liu, Z., Han, G.C., Li, W., et al., Molecular dynamics simulation of inhibition mechanism of 3,5-dibromo salicylaldehyde Schiff’s base, Comput. Theor. Chem., 2015, vol. 1063, p. 50.

    Article  Google Scholar 

  73. Guo, A., Duan, G., He, K., Sun, B., et al., Synergistic effect between 2-oleyl-1-oleylamidoethyl imidazoline ammonium methylsulfate and halide ion by molecular dynamics simulation, Comput. Theor. Chem., 2013, vol. 1015, p. 21.

    Article  Google Scholar 

  74. El Faydy, M., Benhiba, F., Lakhrissi, B., Ebn Touhami, M., et al., The inhibitive impact of both kinds of 5-isothiocyanatomethyl-8-hydroxyquinoline derivatives on the corrosion of carbon steel in acidic electrolyte, J. Mol. Liq., 2019, vol. 295, p. 111629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nahlé.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, R., Nahlé, A., El-Hajjaji, F. et al. Experimental, Density Functional Theory, and Dynamic Molecular Studies of Imidazopyridine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. Surf. Engin. Appl.Electrochem. 57, 233–254 (2021). https://doi.org/10.3103/S1068375521020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521020083

Keywords:

Navigation