Skip to main content
Log in

Evolution of Pore Growth in GaAs in Transitory Anodization Regime from One Applied Voltage to Another

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The paper reports the results of investigation of the pore growth during anodic etching of (111)-oriented wafers of Si-doped n-GaAs in an environmentally friendly NaCl based electrolyte, with switching the applied voltage from a high voltage to lower one and vice-versa. Switching of the applied voltage in the process of anodization was found to cause the formation of layered porous structures with different degrees of porosity. Crystallographically oriented pores shaped as triangular prisms were produced in a stationary regime of anodization, while a more complex morphology of pores was observed at the interface between the two layers with different degrees of porosity, including pores composed of three circular ones. Based on the results of the morphology study using scanning electron microscopy, a possible mechanism of the formation of such kind of pores in the dynamic transitory regime of anodizing is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Liu, P.S. and Chen, G.F., Porous Materials: Processing and Applications, Oxford: Butterworth-Heinemann, 2014, p. 1. https://doi.org/10.1016/C2012-0-03669-1

  2. Ali, G., Ahmad, M., Akhter, J.I., Maqbool, M., et al., Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process, Micron, 2010, vol. 41, p. 560. https://doi.org/10.1016/j.micron.2010.04.010

    Article  Google Scholar 

  3. Schuchardt, A., Braniste, T., Mishra, Y.K., Deng, M., et al., Three-dimensional aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications, Sci. Rep., 2015, vol. 5, p. 8839. https://doi.org/10.1038/srep08839

    Article  Google Scholar 

  4. Tiginyanu, I., Monaico, El., and Monaico, Ed., Ordered arrays of metal nanotubes in semiconductor envelopes, Electrochem. Commun., 2008, vol. 10, p. 731. https://doi.org/10.1016/j.elecom.2008.02.029

    Article  Google Scholar 

  5. Foll, H., Langa, S., Carstensen, J., Lolkes, S., Christophersen, M., and Tiginyanu, I.M., Pores in III–V semiconductors, Adv. Mater., 2003, vol. 15, p. 183. https://doi.org/10.1002/adma.200390043

    Article  Google Scholar 

  6. Monaico, E., Tiginyanu, I., and Ursaki, V., Porous semiconductor compounds, Semicond. Sci Technol., 2020, vol. 35, art. ID 103001. https://doi.org/10.1088/1361-6641/ab9477

    Article  Google Scholar 

  7. Wood, J., Gallium arsenide and related compounds for device applications, Acta Phys. Pol., A, 1991, vol. 79, p. 97. https://doi.org/10.12693/APPhysPolA.79.97

    Article  Google Scholar 

  8. Reid, M., Kravetchi, I.V., Fedosejevs, R., Tiginyanu, I.M., et al., Enhanced terahertz emission from porous InP (111) membranes, Appl. Phys. Lett., 2005, vol. 86, p. 021904. https://doi.org/10.1063/1.1849813

    Article  Google Scholar 

  9. Tiginyanu, I.M., Ursaki, V.V., Karavanskii, V.A., Sokolov, V.N., Raptis, Y.S., and Anastassakis, E., Surface-related phonon mode in porous GaP, Solid State Commun., 1996 vol. 97, no. 8, p. 675. https://doi.org/10.1016/0038-1098(95)00677-X

    Article  Google Scholar 

  10. Harris, J.G.E. and Awschalom, D.D., Fabrication and characterization of 100-nm-thick GaAs cantilevers, Rev. Sci. Instrum., 1996, vol. 67, p. 3591. https://doi.org/10.1063/1.1147250

    Article  Google Scholar 

  11. Palenskis, V., Matukas, J., Vysniauskas, J., Pralgauskaite, S., Shtrikman, H., Seliuta, D., Kasalynas, I., and Valusis, G., Analysis of noise characteristics of GaAs tunnel diodes, Fluctuation Noise Lett., 2013, vol. 12, no. 3, art. ID 1350014. https://doi.org/10.1142/S0219477513500144

    Article  Google Scholar 

  12. Langa, S., Carstensen, J., Tiginyanu, I.M., Christophersen, M., et al., Formation of tetrahedron-like pores during anodic etching of (100) oriented n-GaAs, Electrochem. Solid-State Lett., 2002, vol. 5, p. C14. https://doi.org/10.1149/1.1423803

    Article  Google Scholar 

  13. Tiginyanu, I.M., Ursaki, V.V., Monaico, E., Enachi, M., et al., Quasi-ordered networks of metal nanotubes embedded in semiconductor matrices for photonic applications, J. Nanoelectron. Optoelectron., 2011, vol. 6, p. 463. https://doi.org/10.1166/jno.2011.1197

    Article  Google Scholar 

  14. Monaico, E., Monaico, E.I., Ursaki, V.V., Tiginyanu, I.M., et al., Electrochemical deposition by design of metal nanostructures, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 367. https://doi.org/10.3103/S1068375519040070

    Article  Google Scholar 

  15. Monaico, E., Ursaki, V.V., and Tiginyanu, I.M., Porosity-induced blueshift of photoluminescence in CdSe, J. Appl. Phys., 2006, vol. 100, art. ID 053517. https://doi.org/10.1063/1.2338833

    Article  Google Scholar 

  16. Tiginyanu, I.M., Monaico, E., Ursaki, V.V., Tezlavan, V.E., et al., Fabrication and photoluminescence properties of porous CdSe, Appl. Phys. Lett., 2005, vol. 86, art. ID 063115. https://doi.org/10.1063/1.1864240

    Article  Google Scholar 

  17. Monaico, E., Tiginyanu, I.M., Ursaki, V.V., Sarua, A., et al., Photoluminescence and vibrational properties of nanostructured ZnSe templates, Semicond. Sci. Technol., 2007, vol. 22, p. 1115. https://doi.org/10.1088/0268-1242/22/10/007

    Article  Google Scholar 

  18. Irmer, G., Monaico, E., Tiginyanu, I.M., Gartner, G., Ursaki, V.V., Kolibaba, G.V., and Nedeoglo, D.D., Froehlich vibrational modes in porous ZnSe studied by Raman scattering and Fourier transform infrared reflectance, J. Phys. D: Appl. Phys., 2009, vol. 42, art. ID 045405. https://doi.org/10.1088/0022-3727/42/4/045405

    Article  Google Scholar 

  19. Tiginyanu, I.M., Ursaki, V.V., Monaico, E., Foca, E., et al., Pore etching in III–V and II–VI semiconductor compounds in neutral electrolyte, Electrochem. Solid-State Lett., 2007, vol. 10, p. D127. https://doi.org/10.1149/1.2771076

    Article  Google Scholar 

  20. Langa, S., Carstensen, J., Christophersen, M., Foll, H., et al., Observation of crossing pores in anodically etched n-GaAs, Appl. Phys. Lett., 2001, vol. 78, p. 1074. https://doi.org/10.1063/1.1350433

    Article  Google Scholar 

  21. Tiginyanu, I.M., Langa, S., Christophersen, M., Carstensen, J., et al., Properties of 2D and 3D Dielectric Structures Fabricated by Electrochemical Dissolution of III–V Compounds, Mater. Res. Soc. Symp. Proc. vol. 692, Cambridge: Cambridge Univ. Press, 2011, p. K2.7.1. https://doi.org/10.1557/PROC-692-K2.7.1

  22. Monaico, E., Colibaba, G., Nedeoglo, D., and Nielsch, K., Porosification of III–V and II–VI semiconductor compounds, J. Nanoelectron. Optoelectron., 2014, vol. 9, p. 307. https://doi.org/10.1166/jno.2014.1581

    Article  Google Scholar 

  23. Colibaba, G.V., Monaico, E., Goncearenco, E.P., Nedeoglo, D.D., et al., Growth of ZnCdS single crystals and prospects of their application as nanoporous structures, Semicond. Sci. Technol., 2014, vol. 29, p. 125003. https://doi.org/10.1088/0268-1242/29/12/125003

    Article  Google Scholar 

  24. Monaico, E.I., Monaico, E.V., Ursaki, V.V., Honnali, S., et al., Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires, Beilstein J. Nanotechnol., 2020, vol. 11, p. 966. https://doi.org/10.3762/bjnano.11.81

    Article  Google Scholar 

  25. Li, X., Guo, Z., Xiao, Y., Um, H.D., and Lee, J.H., Electrochemically etched pores and wires on smooth and textured GaAs surfaces, Electrochim. Acta, 2011, vol. 56, p. 5071. https://doi.org/10.1016/j.electacta.2011.03.084

    Article  Google Scholar 

  26. Asoh, H., Kotaka, S., and Ono, S., High-aspect-ratio GaAs pores and pillars with triangular cross section, Electrochem. Commun., 2011, vol. 13, p. 458. https://doi.org/10.1016/j.elecom.2011.02.020

    Article  Google Scholar 

  27. Ono, S., Kotaka, S., and Asoh, H., Fabrication and structure modulation of high-aspect-ratio porous GaAs through anisotropic chemical etching, anodic etching, and anodic oxidation, Electrochim. Acta, 2013, vol. 110, p. 393. https://doi.org/10.1016/j.electacta.2013.06.025

    Article  Google Scholar 

  28. Taib, M.I.M., Zainal, N., and Hassan, Z., Improvement of porous GaAs (100) structure through electrochemical etching based on DMF solution, J. Nanomater., 2014, vol. 14, art. ID 294385. https://doi.org/10.1155/2014/294385

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Eduard Monaico expresses his thanks to the Alexander von Humboldt Foundation for support.

Funding

This research was funded by the National Agency for Research and Development, Moldova, under State Programme Project #20.80009.5007.20 and by the European Commission under project NanoMedTwin, grant #810652.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Monaico or I. M. Tiginyanu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monaico, E.I., Monaico, E.V., Ursaki, V.V. et al. Evolution of Pore Growth in GaAs in Transitory Anodization Regime from One Applied Voltage to Another. Surf. Engin. Appl.Electrochem. 57, 165–172 (2021). https://doi.org/10.3103/S106837552102006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837552102006X

Keywords:

Navigation