Skip to main content
Log in

Double-diffusive Air-CO2 mixture flow in a staggered cavity with numerous concave lower wall aspect ratios

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, double-diffusion natural convection for staggered cavities with a concaved lower wall is investigated. The finite volume procedure is utilized to solve the governing equations along with the boundary conditions. The current code is validated with previously published results. Impacts of Rayleigh number (104 ≤ Ra ≤ 106), buoyancy ratio (− 5 ≤ N ≤ 5), Lewis number (1 ≤ Le ≤ 5), and aspect ratio (0.1 ≤ AR ≤ 0.2) on the flow characteristics are investigated and presented as isotherms, streamlines, and iso-concentrations contours. Moreover, alterations of average Nusselt and average Sherwood numbers with these parameters are analyzed and discussed thoroughly. It is found that average Nusselt and average Sherwood numbers augment with Rayleigh number and buoyancy ratio for aiding flows. These also are found to decrease with decreasing buoyancy ratio for opposing flows. Also, it is elucidated that the aspect ratio has an inverse relationship with average Nusselt and average Sherwood numbers in which the depression in these numbers is determined to be 10.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio

c :

Concentration (kg m3)

C :

Dimensionless concentrations

D :

Mass diffusivity (m2 s1)

g :

Gravity acceleration (m s2)

L :

Cavity length (m)

Le:

Lewis number

N :

Buoyancy ratio

Nuavg :

Average Nusselt number

p :

Pressure (Pa)

P :

Dimensionless pressure

Pr:

Prandtl number

R :

Arc radius (m)

Ra:

Rayleigh number

Shavg :

Average Sherwood number

T :

Temperature (K)

u,v :

Velocity components (m s1)

U, V :

Dimensionless velocity components

x,y :

Dimensional coordinates (m)

X, Y :

Dimensionless coordinates

ρ :

Density (kg m3)

α :

Thermal diffusivity (m2 s1)

β :

Coefficient of thermal expansion (K1)

ν :

Kinematic viscosity (m2 s1)

θ :

Dimensionless temperature

H :

Hot

C :

Cold

h :

High

l :

Low

o :

Reference

S :

Solutal

T :

Thermal

References

  1. A.A. Hussien, W. Al-kouz, M.E. Hassan et al., A review of flow and heat transfer in cavities and their applications. Eur. Phys. J. Plus 136, 353 (2021). https://doi.org/10.1140/epjp/s13360-021-01320-3

  2. A. Abdulkadhim, K. Al-Farhany, A.M. Abed, H.S. Majdi, Al-Qadisiyah J. Eng. Sci. 13, 80 (2020)

    Google Scholar 

  3. A. Ababaei, M. Abbaszadeh, A. Arefmanesh, A.J. Chamkha, Numer. Heat Transf. Part A Appl. 73, 702 (2018)

    Article  ADS  Google Scholar 

  4. L. Koufi, Y. Cherif, Z. Younsi, H. Naji, Heat Transf. Eng. 40, 1268 (2019)

    Article  ADS  Google Scholar 

  5. S. Chen, Appl. Math. Comput. 217, 217–226 (2011).

  6. Z. Alloui, H. Beji, P. Vasseur, Comput. Math. Appl. 62, 725 (2011)

    Article  MathSciNet  Google Scholar 

  7. R. Alvarado-Juárez, G. Álvarez, J. Xamán, I. Hernández-López, Desalination 325, 84 (2013)

    Article  Google Scholar 

  8. T. Bao, Z. (Leo) Liu, Appl. Energy 237, 566 (2019)

    Article  Google Scholar 

  9. H. Sun, G. Lauriat, D.L. Sun, W.Q. Tao, Int. J. Heat Mass Transf. 53, 615 (2010)

    Article  Google Scholar 

  10. S. Chen, J. Tölke, M. Krafczyk, Int. J. Heat Fluid Flow 31, 217 (2010)

    Article  Google Scholar 

  11. S. Chen, H. Liu, C. Zheng, Int. J. Heat Mass Transf. 55, 4862 (2012)

    Article  Google Scholar 

  12. Z.W. Chen, J.M. Zhan, Y.S. Li, Y.Y. Luo, S. Cai, Int. J. Heat Mass Transf. 60, 422 (2013)

    Article  Google Scholar 

  13. Q. Qin, Z.A. Xia, Z.F. Tian, Int. J. Heat Mass Transf. 71, 405 (2014)

    Article  Google Scholar 

  14. S.K. Jena, L.K. Malla, S.K. Mahapatra, A.J. Chamkha, Int. J. Heat Mass Transf. 81, 681 (2015)

    Article  Google Scholar 

  15. M. Corcione, S. Grignaffini, A. Quintino, Int. J. Heat Mass Transf. 81, 811 (2015)

    Article  Google Scholar 

  16. J. Serrano-Arellano, J. Xamán, G. Álvarez, M. Gijón-Rivera, Int. J. Heat Mass Transf. 64, 725 (2013)

    Article  Google Scholar 

  17. J. Serrano-Arellano, M. Gijón-Rivera, Int. J. Heat Mass Transf. 70, 103 (2014)

    Article  Google Scholar 

  18. J. Serrano-Arellano, M. Gijón-Rivera, J.M. Riesco-Ávila, F. Elizalde-Blancas, Int. J. Heat Mass Transf. 71, 664 (2014)

    Article  Google Scholar 

  19. S.K. Jena, S.K. Mahapatra, A. Sarkar, A.J. Chamkha, J. Taiwan Inst. Chem. Eng. 51, 9 (2015)

    Article  Google Scholar 

  20. N. Reddy and K. Murugesan, Front. Heat Mass Transf. 8, 7 (2017)

  21. S. Chen, B. Yang, X. Xiao, C. Zheng, Int. J. Heat Mass Transf. 87, 477 (2015)

    Google Scholar 

  22. G.H.R. Kefayati, N.A. Che Sidik, Powder Technol. 305, 679 (2017)

    Article  Google Scholar 

  23. G.R. Kefayati, H. Tang. Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: Heatand mass transfer). Int. J. Heat Mass Transf. 120, 731–750 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.080G.H.R

  24. G.R. Kefayati, H. Tang. Double-diffusive laminar natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part II: Entropy generation). Int. J. Heat Mass Transf. 120, 683–713 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.081

  25. G.H.R. Kefayati, Int. J. Heat Mass Transf. 116, 762 (2018)

    Article  Google Scholar 

  26. A.M. Al-Amiri, K.M. Khanafer, Int. J. Therm. Sci. 45, 567 (2006)

    Article  Google Scholar 

  27. W. Al-Kouz, A. Alshare, A. Alkhalidi, and S. Kiwan, Springerplus 5, (2016)

  28. M. Ghalambaz, J. Zhang, Int. J. Heat Mass Transf. 146, 118832 (2020)

    Article  Google Scholar 

  29. S.M. Hashem Zadeh, S.A.M. Mehryan, M. Ghalambaz, M. Ghodrat, J. Young, A. Chamkha, Energy 213, 118761 (2020)

    Article  Google Scholar 

  30. S.A.M. Mehryan, M. Ghalambaz, L. Sasani Gargari, A. Hajjar, M. Sheremet, J. Energy Storage 28, 101236 (2020)

    Article  Google Scholar 

  31. M.A. Teamah, Int. J. Therm. Sci. 46, 637 (2007)

    Article  Google Scholar 

  32. G.H.R. Kefayati, Energy 107, 917 (2016)

    Article  Google Scholar 

  33. A. Sathiyamoorthi, S. Anbalagan, Chinese J. Phys. 56, 2155 (2018)

    Article  ADS  Google Scholar 

  34. S. Arun, A. Satheesh, J. Taiwan Inst. Chem. Eng. 95, 155 (2019)

    Article  Google Scholar 

  35. R. Parveen, T.R. Mahapatra, Heliyon 5, e02496 (2019)

    Article  Google Scholar 

  36. A. M. Aly, Phys. A Stat. Mech. Its Appl. 546, (2020).

  37. M. Ghalambaz, S.M. Hashem Zadeh, S.A.M. Mehryan, I. Pop, D. Wen, Appl. Math. Model. 77, 1936 (2020)

    Article  MathSciNet  Google Scholar 

  38. A. Abdulkadhim, A.M. Abed, A.M. Mohsen, K. Al-Farhany, Math. Model. Eng. Probl. 5, 395 (2018)

    Article  Google Scholar 

  39. K. Al-Farhany, A. Abdulkadhim, J. Eng. Appl. Sci. 13, 6823 (2018)

    Google Scholar 

  40. W. Al-Kouz, K.B. Saleem, A. Chamkha, Int. Commun. Heat Mass Transf. 116, 104719 (2020)

    Article  Google Scholar 

  41. K.B. Saleem, W. Al-Kouz, A. Chamkha, Numerical analysis of rarefied gaseous flows in a square partially heated two-sided wavy cavity with internal heat generation. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09959-3

  42. R. Nikbakhti, A.B. Rahimi, J. Taiwan Inst. Chem. Eng. 43, 535 (2012)

    Article  Google Scholar 

  43. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, Abingdon, 1980).

    MATH  Google Scholar 

  44. K.B. Saleem, L. Koufi, A.K. Alshara, L. Kolsi, Int. J. Mech. Sci. 181, 105728 (2020)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid B. Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, H.I., Saleem, K.B., Al-Farhany, K. et al. Double-diffusive Air-CO2 mixture flow in a staggered cavity with numerous concave lower wall aspect ratios. Eur. Phys. J. Plus 136, 499 (2021). https://doi.org/10.1140/epjp/s13360-021-01486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01486-w

Navigation