Skip to main content
Log in

Thermo-fluidic transport of electromagnetohydrodynamic flow in a corrugated porous medium microchannel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the heat transfer characteristics associated with the impact of combined electromagnetohydrodynamic flow in a microchannel with the regular wavy rough wall through a porous medium have been investigated. The approximate analytical solutions for the velocity and potential distribution are obtained using the perturbation technique. To study the thermal characteristics, the analytical solution for temperature distribution in the presence of Joule heating is derived. Impressive results are obtained to examine the behavior of velocity and temperature due to the rough wavy wall in the presence of applied magnetic field and transverse electric field. The significant effects on velocity and heat transport within the corrugated microchannel for various combination of pertinent parameters such as Hartmann number, Darcy number and transverse electric field are elaborated. Furthermore, variation of the mean velocity and the rate of heat transfer characteristic due to wavy roughness and the magnetic field has been studied. The study shows that the mean velocity decreases with Darcy number and has enhancing effect on applied magnetic field, whereas the trend is reversed in the case of applied electric field. The rate of heat transfer increases with an increase in Joule heating effects, Hartmann number and permeability of the porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K. Nandy, S. Chaudhuri, R. Ganguly, I.K. Puri, J. Magn. Magn. Mater. 320(7), 1398–1405 (2008)

    Article  ADS  Google Scholar 

  2. K. Ohno, K. Tachikawa, A. Manz, Electrophoresis 29, 4443–4453 (2008)

    Article  Google Scholar 

  3. H. Becker, C. Gartner, Electrophoresis 21, 12–26 (2000)

    Article  Google Scholar 

  4. J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  5. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  ADS  Google Scholar 

  6. C.K. Nash, I. Fritsch, Anal. Chem. 88, 1601–1609 (2016)

    Article  Google Scholar 

  7. J. Jang, S.S. Lee, Sens. Actuators A 80, 84–97 (2000)

    Article  Google Scholar 

  8. A. Homsy, S. Koster, J.C.T. Eijkel, A.V.D. Berg, F. Lucklum, E. Verpoorte, N.F.D. Rooij, Lab Chip 5, 466–471 (2005)

    Article  Google Scholar 

  9. B. Nguyen, S.K. Kassegne, Microfluid. Nanofluid 5, 383–393 (2008)

    Article  Google Scholar 

  10. A.V. Lemoff, A.P. Lee, Sens. Actuators B: Chem 63, 178–185 (2000)

    Article  Google Scholar 

  11. J.C.T. Eijkela, J.C.T. Daltonb, C. Haydenb, C.J. Burtb, J.P.H. Manz, Sens. Actuators B:Chem. 92, 215–221 (2003)

    Article  Google Scholar 

  12. L. Huang, W. Wang, M.C. Murphy, K. Lian, Z.G. Ling, Microsyst. Technol. 6, 84–97 (2000)

    Article  Google Scholar 

  13. M. Shojaeian, M. Shojaeian, Microfluid Nanofluid 12, 553–564 (2012)

    Article  Google Scholar 

  14. H.H. Bau, J. Zhu, S. Qian, Y. Xiang, Sens. Actuators B 88, 205–216 (2003)

    Article  Google Scholar 

  15. H.H. Bau, J. Zhong, M. Yi, Actuat. B Chem. 79, 207–215 (2001)

    Article  Google Scholar 

  16. Y. Gao, T.N. Wong, C. Yang, K.T. Ooi, J. Colloid Interface Sci. 284, 306–314 (2005)

    Article  ADS  Google Scholar 

  17. J.P. Gleeson, O.M. Roche, J. West, A. Gelb, SIAM J. Appl. Math. 64, 1294–1310 (2004)

    Article  MathSciNet  Google Scholar 

  18. S. Das, S. Chakraborty, S.K. Mitra, Microfluid Nanofluid 13, 799–807 (2012)

    Article  Google Scholar 

  19. A. Sinha, G.C. Shit, J. Magn. Magn. Mater. 378, 143–151 (2015)

    Article  ADS  Google Scholar 

  20. S. Sarkar, S. Ganguly, P. Dutta, Chem. Eng. Sci. 171, 391–403 (2017)

    Article  Google Scholar 

  21. L. Wang, Y. Jian, Q. Liu, F. Li, L. Chang, Colloids Surf. A:Physicochem. Eng. Aspects 494, 87–97 (2016)

    Article  Google Scholar 

  22. S. Sarkar, S. Ganguly, S. Chakraborty, Microfluid Nanofluid 21(3), 56-1–56-16 (2017)

    Article  Google Scholar 

  23. C. Vargas, J. Arcos, O. Bautista, F. Mendez, Phys. Fluids 29, 092002 (2017)

    Article  ADS  Google Scholar 

  24. Z. Xie, Y. Jian, Colloids Surf. A Physicochem. Eng. Aspects 529, 334–345 (2017)

    Article  Google Scholar 

  25. S. Sarkar, S. Ganguly, P. Dutta, Int. J. Heat Mass Transf. 100, 451–463 (2016)

    Article  Google Scholar 

  26. S. Chakraborty, D. Paul, J. Phys. D Appl. Phys. 39, 5364–5371 (2006)

    Article  ADS  Google Scholar 

  27. R. Chakraborty, R. Dey, S. Chakraborty, Int. J. Heat Mass Transf. 67, 1151–1162 (2013)

    Article  Google Scholar 

  28. Y. Liu, Y. Jian, W. Tan, Int. J. Heat Mass Transf. 127(A), 901–913 (2018)

    Article  Google Scholar 

  29. Y. Liu, Y. Jian, Appl. Math. Mech. 40, 1457–1470 (2019)

    Article  Google Scholar 

  30. G.P. Zhao, Y.J. Jian, F.Q. Li, J. Mech. 33(1), 115–124 (2017)

    Article  Google Scholar 

  31. N. Biswas, N. K. Manna, A. J. Chamkha, J. Therm. Anal. Calorim. (2020)

  32. N. Biswas, U.K. Sarkar, A.J. Chamkha, N.K. Manna, J. Therm. Anal. Calorim. 143, 1727–1753 (2021)

    Article  Google Scholar 

  33. M.V. Krishna, N.A. Ahamad, A.J. Chamkha, Alex. Eng. J. 59, 565–577 (2020)

    Article  Google Scholar 

  34. M. Ghalambaz, S.A.M. Mehryan, I. Zahmatkesh, A. Chamkha, Int. J. Therm. Sci. 157, 106503 (2020)

    Article  Google Scholar 

  35. G. Karniadakis, A. Beskok, N. Aluru (Springer, New York, 2005)

  36. G. Karniadakis, A. Beskok, Micro Flows (Springer, New York, 2002)

    MATH  Google Scholar 

  37. D. Nield, A. Bejan (Springer, New York, 1999)

  38. S.M.H. Zadeh, S.A.M. Mehryan, M. Ghalambaz, M. Ghodrat, J. Young, A. Chamkha, Energy (2020)

  39. M. Buren, Y. Jian, L. Chang, J. Phys. D Appl. Phys. 47, 425501 (2014)

    Article  ADS  Google Scholar 

  40. D. Si, Y. Jain, J. Phys. D Appl. Phys. 48, 085501 (2015)

    Article  ADS  Google Scholar 

  41. M. Buren, Y. Jian, Electrophoresis 36, 1539–1548 (2015)

    Article  Google Scholar 

  42. M. Buren, Y. Jain, L. Chang, F. Li, Q. Liu, I.O.P. Publishing, Jpn. Soc. Fluid Mech. Fluid Mech. Res. 49, 025517 (2017)

  43. M.M. Rashid, S. Nadeem, Can. J. Phys. 97(7), 701–720 (2019)

    Article  ADS  Google Scholar 

  44. M.M. Rashid, I. Shahzadi, S. Nadeem, Results Phys. 9, 171–182 (2018)

    Article  ADS  Google Scholar 

  45. E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  46. H. Keramati, A. Sadeghi, M.H. Saidi, S. Chakraborty, Int. J. Heat Mass Transf. 92, 244–251 (2016)

    Article  Google Scholar 

  47. N.K. Ranjit, G.C. Shit, Physica A 482, 458–476 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. G.C. Shit, A. Mondal, A. Sinha, P.K. Kundu, Physica A 462, 1040–1057 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Nicola, O. Simek, ASME J. Heat Transf. 124, 356–364 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the esteemed reviewers for their encouraging comments to improve the original manuscript. This work has been supported by SERB, Govt of India (Grant File No. EMR/2016/006383). The authors would like to acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motahar Reza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza, M., Rana, A. & Shit, G.C. Thermo-fluidic transport of electromagnetohydrodynamic flow in a corrugated porous medium microchannel. Eur. Phys. J. Plus 136, 496 (2021). https://doi.org/10.1140/epjp/s13360-021-01505-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01505-w

Navigation