Skip to main content

Advertisement

Log in

THz pulses from optically excited Fe-, Pt- and Ta-based spintronic heterostructures

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Spintronic heterostructures are considered to be the new generation terahertz (THz) sources because of their capability of producing high power and broadband THz radiation. Here, we provide a brief review on the state-of-the-art in this field. The optically excited bi- and tri-layer combinations of ferromagnetic and non-magnetic thin films have become increasingly popular. Towards optimising the THz conversion efficiency and broadband gapless spectrum from these THz emitters, various control parameters need to be taken into consideration. The inverse spin Hall effect in the heavy metal layer of the heterostructure is primarily responsible for the generation of THz pulses. A few new results on iron-, platinum- and tantalum-based heterostructures have also been reported here. It is observed that the Ta(2 nm)/Fe(2 nm)/Pt(2 nm) tri-layer heterostructure generates \(\sim \)40(250)% stronger THz signal than the counterpart Fe(2 nm)/Pt(2 nm) (Fe(3 nm)/Ta(2 nm)) bi-layer heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. D H Auston, K P Cheung, J A Valdmanis and D A Kleinman, Phys. Rev. Lett. 53, 1555 (1984)

    Article  ADS  Google Scholar 

  2. J A Fülöp, L Pálfalvi, G Almási and J Hebling, Opt. Express 18, 12311 (2010)

    Article  ADS  Google Scholar 

  3. R Safian, G Ghazi and N Mohammadian, J. Opt. Eng. 58, 110901 (2019)

    Article  ADS  Google Scholar 

  4. J A Fülöp, G Polónyi, B Monoszlai, G Andriukaitis, T Balciunas, A Pugzlys, G Arthur, A Baltuska and J Hebling, Optica 3, 1075 (2016)

    Article  ADS  Google Scholar 

  5. C Vicario, M Jazbinsek, A V Ovchinnikov, O V Chefonov, S I Ashitkov, M B Agranat and C P Hauri, Opt. Express 23, 4573 (2015)

    Article  ADS  Google Scholar 

  6. X Ropagnol, M Khorasaninejad, M Raeiszadeh, S Safavi-Naeini, M Bouvier, C Y Côté, A Laramée, M Reid, M A Gauthier and T Ozaki, Opt. Express 24, 11299 (2016)

    Article  ADS  Google Scholar 

  7. K Charrada, G Zissis and M Aubes, J. Phys. D 29, 2432 (1996)

    Article  ADS  Google Scholar 

  8. J Lusakowski et al, J. Appl. Phys. 97, 064307 (2005)

    Article  ADS  Google Scholar 

  9. R Köhler, A Tredicucci, F Beltram, H E Beere, E H Linfield, A G Davies, D A Ritchie, R C Iotti and F Rossi, Nature 417, 156 (2002)

    Article  ADS  Google Scholar 

  10. M Kress, T Löffler, S Eden, M Thomson and H G Roskos, Opt. Lett. 29, 1120 (2004)

    Article  ADS  Google Scholar 

  11. J A Fülöp, S Tzortzakis and T Kampfrath, Adv. Opt. Mater. 8, 1900681 (2020)

    Article  Google Scholar 

  12. E R Brown, K A McIntosh, K B Nichols and C L Dennis, Appl. Phys. Lett. 66, 285 (1995)

    Article  ADS  Google Scholar 

  13. S Preu, G H Döhler, S Malzer, L J Wang and A C Gossard, J. Appl. Phys. 109, 061301 (2011)

    Article  ADS  Google Scholar 

  14. B Green et al, Sci. Rep. 6, 22256 (2016)

    Article  ADS  Google Scholar 

  15. H Hirori, A Doi, F Blanchard and K Tana, Appl. Phys. Lett. 98, 091106 (2011)

    Article  ADS  Google Scholar 

  16. S Alexander, L Alfred and H Rupert, Opt. Lett. 33, 2767 (2008)

  17. T I Oh, Y J Yoo, Y S You and K Y Kim, Appl. Phys. Lett. 105, 041103 (2014)

    Article  ADS  Google Scholar 

  18. A Hoffmann, IEEE Trans. Magn. 49, 5172 (2013)

    Article  ADS  Google Scholar 

  19. E Saitoh, M Ueda, H Miyajima and G Tatara, Appl. Phys. Lett. 88, 182509 (2006)

    Article  ADS  Google Scholar 

  20. S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnár, M L Roukes, A Y Chtchelkanova and D M Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  21. T Kampfrath, M Battiato, P Maldonado, G Eilers, J Nötzold, S Mährlein, V Zbarsky, F Freimuth, Y Mokrousov, S Blügel, M Wolf, I Radu, P M Oppeneer and M Münzenberg, Nature Nanotechnol. 8, 256 (2013)

    Article  ADS  Google Scholar 

  22. T Seifert et al, Nature Photon. 10, 483 (2016)

    Article  ADS  Google Scholar 

  23. G Torosyan, S Keller, L Scheuer, R Beigang and E T Papaioannou, Sci. Rep. 8, 1311 (2018)

    Article  ADS  Google Scholar 

  24. D Yang, J Liang, C Zhou, L Sun, R Zheng, S Luo, Y Wu and J Qi, Adv. Opt. Mater. 4, 1944 (2016)

    Article  Google Scholar 

  25. Y Wu, M Elyasi, X Qiu, M Chen, Y Liu, L Ke and H Yang, Adv. Mater. 29, 1603031 (2017)

    Article  Google Scholar 

  26. T Seifert, S Jaiswal, M Sajadi, G Jakob, S Winnerl, M Wolf, M Kläui and T Kampfrath, Appl. Phys. Lett. 110, 252402 (2017)

    Article  ADS  Google Scholar 

  27. V P Zhukov, E V Chulkov and P M Echenique, Phys. Rev. B 73, 125105 (2006)

    Article  ADS  Google Scholar 

  28. N Laman and D Grischkowsky, Appl. Phys. Lett. 93, 051105 (2008)

    Article  ADS  Google Scholar 

  29. T S Seifert, N M Tran, O Gueckstock, S M Rouzegar, L Nadvornik, S Jaiswal, G Jakob, V V Temnov, M Münzenberg, M Wolf, M Kläui and T Kampfrath, J. Phys. D 51, 364003 (2018)

    Article  Google Scholar 

  30. B C Choi, J Rudge, K Jordan and T Genet, Appl. Phys. Lett. 116, 132406 (2020)

    Article  ADS  Google Scholar 

  31. W Zhang, P Maldonado, Z Jin, T S Seifert, J Arabski, G Schmerber, E Beaurepaire, M Bonn, T Kampfrath, P M Oppeneer and D Turchinovich, Nature Commun. 11, 4247 (2020)

    Article  ADS  Google Scholar 

  32. J Walowski and M Münzenberg, J. Appl. Phys. 120, 140901 (2016)

    Article  ADS  Google Scholar 

  33. E Beaurepaire, G M Turner, S M Harrel, M C Beard, J Y Bigot and C A Schmuttenmaer, Appl. Phys. Lett. 84, 3465 (2004)

    Article  ADS  Google Scholar 

  34. F Kadlec, P Kužel and J-L Coutaz, Opt. Lett. 29, 2674 (2004)

    Article  ADS  Google Scholar 

  35. N Kumar, R W A Hendrikx, A J L Adam and P C M Planken, Opt. Express 23, 14252 (2015)

    Article  ADS  Google Scholar 

  36. R Knorren, K H Bennemann, R Burgermeister and M Aeschlimann, Phys. Rev. B 61, 9427 (2000)

    Article  ADS  Google Scholar 

  37. M Battiato, K Carva and P M Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)

    Article  ADS  Google Scholar 

  38. T Seifert et al, Spin 07, 1740010 (2017)

    Article  ADS  Google Scholar 

  39. J Sinova, S O Valenzuela, J Wunderlich, C H Back and T Jungwirth, Rev. Mod. Phys. 87, 1213 (2015)

    Article  ADS  Google Scholar 

  40. G Li, R V Mikhaylovskiy, K A Grishunin, J D Costa, T Rasing and A V Kimel, \(J.\)Phys. D 51, 134001 (2018)

  41. R I Herapath, S M Hornett, T S Seifert, G Jakob, M Kläui, J Bertolotti, T Kampfrath and E Hendry, Appl. Phys. Lett. 114, 041107 (2019)

    Article  ADS  Google Scholar 

  42. E T Papaioannou, G Torosyan, S Keller, L Scheuer, M Battiato, V K Mag-Usara, J L’huillier, M Tani and R Beigang, IEEE Trans. Magn. 54, 1 (2018)

    Article  Google Scholar 

  43. R Adam, G Chen, D E Bürgler, T Shou, I Komissarov, S Heidtfeld, H Hardtdegen, M Mikulics, C M Schneider and R Sobolewski, Appl. Phys. Lett. 114, 212405 (2019)

    Article  ADS  Google Scholar 

  44. H S Qiu, K Kato, K Hirota, N Sarukura, M Yoshimura and M Nakajima, Opt. Express 26, 15247 (2018)

    Article  ADS  Google Scholar 

  45. R Pereira, L F Marchesi, R G Freitas, R Matos and E C Pereira, J. Power Sources 232, 254 (2013)

    Article  Google Scholar 

  46. A Kumar, R Bansal, S Chaudhary and P K Muduli, Phys. Rev. B 98, 104403 (2018)

    Article  ADS  Google Scholar 

  47. L G Parratt, Phys. Rev. 95, 359 (1954)

    Article  ADS  Google Scholar 

  48. R Allenspach and A Bischof, Phys. Rev. Lett. 69, 3385 (1992)

    Article  ADS  Google Scholar 

  49. C A F Vaz, J A C Bland and G Lauhoff, Rep. Prog. Phys. 71, 056501 (2008)

  50. Q Wu and X C Zhang, Appl. Phys. Lett. 71, 1285 (1997)

    Article  ADS  Google Scholar 

  51. J Xu, K W Plaxco and S J Allen, J. Chem. Phys. 124, 036101 (2006)

    Article  ADS  Google Scholar 

  52. T Seki, Y Hasegawa, S Mitani, S Takahashi, H Imamura, S Maekawa, J Nitta and K Takanashi, Nature Mater. 7, 125 (2008)

    Article  ADS  Google Scholar 

  53. M Morota, Y Niimi, K Ohnishi, D H Wei, T Tanaka, H Kontani, T Kimura and Y Otani, Phys. Rev. B 83, 174405 (2011)

    Article  ADS  Google Scholar 

  54. G Li, R Medapalli, R V Mikhaylovskiy, F E Spada, T Rasing, E E Fullerton and A V Kimel, Phys. Rev. Mater. 3, 084415 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

SK acknowledges SERB (DST) and Joint Advanced Technology Centre at IIT Delhi for financial support. One of the authors (Sandeep Kumar) acknowledges University Grants Commission, Government of India for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Nivedan, A., Singh, A. et al. THz pulses from optically excited Fe-, Pt- and Ta-based spintronic heterostructures. Pramana - J Phys 95, 75 (2021). https://doi.org/10.1007/s12043-021-02102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02102-3

Keywords

PACS Nos

Navigation