Skip to main content
Log in

On a Critical Exponential p & N Equation Type: Existence and Concentration of Changing Solutions

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this paper we study a class of quasilinear equation with exponential critical growth. More precisely, we show existence of a family of nodal solutions, i.e, sign-changing solutions for the problem

Such nodal solutions concentrate on the minimum points set of the potential V, changes sign exactly once in \({\mathbb {R}}^{N}\) and have exponential decay at infinity. Here we use variational methods and Del Pino and Felmer’s technique (Del Pino and Felmer 1996) in order to overcome the lack of compactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, F.S.B., Severo, U.B.: Stationary Schrödinger equations in \({\mathbb{R}}^{2}\) with unbounded or vanishing potentials and involving concave nonlinearities. Complex Var. Elliptic Equ. 63(3), 368–390 (2018)

    Article  MathSciNet  Google Scholar 

  • Alves, C.O., Souto, M.: Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains. Z. Angew. Math. Phys

  • Alves, C.O.: Existence of a positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity with exponential critical growth in \({\mathbb{R}}^{2}\). Milan J. Math. 84(1), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  • Alves, C.O., Figueiredo, G.M.: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \({\mathbb{R}}^N\). J. Differ. Equ. 246, 1288–1311 (2009)

    Article  Google Scholar 

  • Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 11, 265–295 (2011)

    Article  MathSciNet  Google Scholar 

  • Alves, C.O., Pereira, D.S.: Multiplicity of multi-bump type nodal solutions for a class of elliptic problems with exponential critical growth in \({\mathbb{R}}^{2}\). Proc. Edinb. Math. Soc. (2) 60(2), 273–297 (2017)

    Article  MathSciNet  Google Scholar 

  • Alves, C.O., Soares, S.H.M.: On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296, 563–577 (2004)

    Article  MathSciNet  Google Scholar 

  • Alves, C.O., Soares, S.H.M.: Nodal solutions for singularly perturbed equations with critical exponential growth. J. Differ. Equ. 234(2), 464–484 (2007)

    Article  MathSciNet  Google Scholar 

  • Aouaoui, S., Albuquerque, F.S.B.: Adams’ type inequality and application to a quasilinear nonhomogeneous equation with singular and vanishing radial potentials in \(\mathbb{R}^{4}\). Ann. Mat. Pura Appl. (4) 198(4), 1331–349 (2019)

    Article  MathSciNet  Google Scholar 

  • Barile, S., Figueiredo, G.M.: Existence of least energy positive, negative and nodal solutions for a class of p & q-problems. JMAA 427, 1205–1233 (2015)

    MATH  Google Scholar 

  • Bezerra do Ó, J.M.: Quasilinear elliptic equations with exponential nonlinearities. Commun. Appl. Nonlinear Anal. 2(3), 63–72 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bezerra do Ó, J.M.: \(N\)-Laplacian equations in \({\mathbb{R}}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  • Bezerra do Ó, J.M., Ruf, B.: On a Schrödinger equation with periodic potential and critical growth in \(\mathbb{R}^{2}\). NoDEA Nonlinear Differ. Equ. Appl. 13(2), 167–192 (2006)

    Article  Google Scholar 

  • Candela, A.M., Squassina, M.: On a class of elliptic equations for the n-Laplacian in \({\mathbb{R}}^{N}\) with one-sided exponential growth. Serdica Math. J. 29(4), 315–336 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent \({\mathbb{R}}^N\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  Google Scholar 

  • Castro, A., Cossio, J., Neuberger, J.: A sign-changing solution for a super linear Dirichlet problem. Rocky Mt. J. Math. 2 7(4), 1041–1053 (1997)

  • de Araujo, A.L., Faria, L.O.: Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term. J. Differ. Equ. 267(8), 4589–4608 (2019)

    Article  MathSciNet  Google Scholar 

  • Del Pino, M., Felmer, P.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  • Di Benedetto, E.: \(C^{1,\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1985)

    Article  Google Scholar 

  • Figueiredo, G.M., Nunes, F.B.M.: Existence of a least energy nodal solution for a class of quasilinear elliptic equations with exponential growth. Funkcialaj Ekvacioj (2020)

  • Figueiredo, G.M.: Existence of positive solutions for a class of p&q elliptic problems with critical growth on \({\mathbb{R}}^{N}\). J. Math. Anal. Appl. 378, 507–518 (2011)

    Article  MathSciNet  Google Scholar 

  • Figueiredo, G.M., Nunes, F.B.M.: Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method. Rev. Mat. Complut. 32(1), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  • Figueiredo, G.M., Radulescu, V.D.: Nonhomogeneous equations with critical exponential growth and lack of compactness. Opusc. Math. 40, 71–92 (2020)

    Article  MathSciNet  Google Scholar 

  • Kikuchi, H., Wei, J.: A bifurcation diagram of solutions to an elliptic equation with exponential nonlinearity in higher dimensions. Proc. R. Soc. Edinb. Sect. A 148(1), 101–122 (2018)

    Article  MathSciNet  Google Scholar 

  • Li, G.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenincae Ser. A. 14, 27–36 (1989)

    Google Scholar 

  • Li, G., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of \(p-q\)-Laplacian type on \({\mathbb{R}}^{N}\). Nonlinear Anal. 71(5–6), 2316–2334 (2009)

    Article  MathSciNet  Google Scholar 

  • Medeiros, E.S., Severo, U.B., Silva, E.B.: An elliptic equation with indefinite nonlinearities and exponential critical growth in \(\mathbb{R}^{2}\). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(2), 473–507 (2019)

    MathSciNet  MATH  Google Scholar 

  • Pereira, D.S.: Existence of infinitely many sign-changing solutions for elliptic problems with critical exponential growth. Electron. J. Differ. Equ. 119, 16 (2015)

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. ZAMP 43, 270–291 (1992)

    MathSciNet  MATH  Google Scholar 

  • Silva, E.B., Soares, S.H.M.: Liouville-Gelfand type problems for the N-Laplacian on bounded domains of \({\mathbb{R}}^{N}\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1), 1–30 (1999)

    MathSciNet  MATH  Google Scholar 

  • Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  • Wu, M., Yang, Z.: A class of p-q-Laplacian type equation with potentials eigenvalue problem in \({\mathbb{R}}^{N}\). Bound. Value Probl. Art. ID 185319, 19 (2009)

Download references

Funding

The article was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Apoio à Pesquisa do Distrito Federal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo S. Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gustavo S. Costa and Giovany M. Figueiredo were partially supported by CNPq, Capes and FAPDF-Brazil.

Appendix

Appendix

In this appendix we show existence of nodal solution for the problem

figure k

where r is the constant that appears in the hypothesis \((f_5)\) and \(V_{\infty }\) is a positive constant. We have associated to the problem \((P_r)\) the functional

$$\begin{aligned} I_r(u)=\dfrac{1}{p}\displaystyle \int \limits _{\Omega }\left[ k_2|\nabla u|^p+V_{\infty } k_4|u|^p \right] dx+\dfrac{1}{N}\displaystyle \int \limits _{\Omega }\left[ |\nabla u|^N+ V_{\infty } |u|^N \right] dx- \dfrac{1}{r}\displaystyle \int \limits _{\Omega }|u|^r dx \end{aligned}$$

and the set

$$\begin{aligned} {\mathcal {N}}^\pm _r=\{u\in W^{1,N}_0(\Omega )|~u^\pm \ne 0~\text {and}~I_r'(u)u^\pm =0\} \end{aligned}$$

Then, we can prove that there exists \(w_r\in {\mathcal {N}}_r^\pm \) such that

$$\begin{aligned} I_r(w_r)=c_r:=\inf \limits _{{\mathcal {N}}^\pm _r}I_r&\text {and}&I'_r(w_r)=0. \end{aligned}$$
(5.2)

Lemma 5.5

For each \(u\in W^{1,N}_0(\Omega )\) such that \(u^\pm \ne 0\), there exists a unique pair \((t,s) \in (0,+\infty )\times (0,+\infty )\), such that \(t u^++su^-\in {\mathcal {N}}^\pm _r\).

Proof

Note that if \(u^{\pm }\in W^{1,N}_0(\Omega )\backslash \{0\}\) and \(\gamma >0\), we have

$$\begin{aligned} \frac{I_r(\gamma u^{\pm })}{\gamma ^r}= & {} \dfrac{\gamma ^{p-r}}{p}\displaystyle \int \limits _{\Omega }\left[ k_2|\nabla u^{\pm }|^p+V_\infty k_4|u^{\pm }|^p \right] dx\\&+\dfrac{\gamma ^{N-r}}{N}\displaystyle \int \limits _{\Omega }\left[ |\nabla u^{\pm }|^N+ V_\infty |u^{\pm }|^N \right] dx- \dfrac{1}{r}\displaystyle \int \limits _{\Omega }|u^{\pm }|^r dx. \end{aligned}$$

Then,

$$\begin{aligned} \lim \limits _{\gamma \rightarrow 0} \dfrac{I_r( \gamma u^{\pm })}{\gamma ^r}=+\infty ~~\text {and}~~\lim \limits _{\gamma \rightarrow +\infty } \dfrac{I_r(\gamma u^{\pm })}{\gamma ^r}=- \dfrac{1}{r}\displaystyle \int \limits _{\Omega }|u^{\pm }|^r dx<0. \end{aligned}$$

Consequently, there exists \(t,~s \in (0,+\infty )\) such that

$$\begin{aligned} I_r(t u^+):=\sup \limits _{\gamma \ge 0} I_r (\gamma u^+)~~ \text {and}~~ I_r(s u^-):=\sup \limits _{\gamma \ge 0} I_r (\gamma u^-). \end{aligned}$$

This implies that

$$\begin{aligned} I'_r(tu^++su^-)(tu^++su^-)=I'_r(tu^+)tu^++I'_r(su^-)su^-=0 \end{aligned}$$

In order to show the unicity of t and s, consider \(f(s)=s^r\) and note that \(\dfrac{f(t)}{t^N}\) is nondecreasing in \(t>0\). \(\square \)

Lemma 5.6

The following properties hold:

  1. (i)

    There exists a constant \(\rho _r>0\) such that \(\left[ ~\displaystyle \int \limits _{\Omega }|\nabla u^\pm |^N dx\right] ^{1/N}\ge \rho _r\), for all \(u\in {\mathcal {N}}^\pm _r\);

  2. (ii)

    There exists a constant \(C_r>0\) such that \(I_r(u)\ge C_r \displaystyle \int \limits _{\Omega }|\nabla u|^N dx\), for all \(u\in {\mathcal {N}}^\pm _r\).

Proof

Using that \(I'_r(u)u^\pm =0\) and by Sobolev embeddings there exists a constant \(C>0\) such that

$$\begin{aligned} \begin{array}{llll} \displaystyle \int \limits _{\Omega }|\nabla u^\pm |^N dx&{}\le &{} \displaystyle \int \limits _{\Omega }\left[ k_2 |\nabla u^\pm |^p+V_\infty k_4|u^\pm |^p\right] dx+\displaystyle \int \limits _{\Omega }\left[ |\nabla u^\pm |^N+V_\infty |u^\pm |^N\right] dx\vspace{0,2cm}\\ {} &{}=&{} \displaystyle \int \limits _{\Omega } |u^\pm |^r dx \le C \left[ ~\displaystyle \int \limits _{\Omega }|\nabla u^\pm |^N dx\right] ^{r/N}. \end{array} \end{aligned}$$

Since \(r>N\), the item (i) follows.

To verify the second assertion observe that

$$\begin{aligned} I_r(u)= & {} I_r(u)-\dfrac{1}{r}I'_r(u) u\\= & {} \left( \dfrac{1}{p}-\dfrac{1}{r} \right) \displaystyle \int \limits _{\Omega }\left[ k_2 |\nabla u|^p+V_\infty k_4|u|^p\right] dx\\&+\left( \dfrac{1}{N}-\dfrac{1}{r} \right) \displaystyle \int \limits _{\Omega }\left[ |\nabla u|^N+V_\infty |u|^N\right] dx \\\ge & {} \left( \dfrac{1}{N}-\dfrac{1}{r} \right) \displaystyle \int \limits _{\Omega }|\nabla u|^N dx. \end{aligned}$$

\(\square \)

Proposition 5.7

There exists \(w_r\in W_0^{1,N}(\Omega )\) such that \(w_r\) is a solution of \((P_r)\) and \(I_r(w_r)=\inf \nolimits _{{\mathcal {N}}^{\pm }_{r}}I_r\).

Proof

Let \((u_n)\) be a minimizing sequence for \(I_r\) in \({\mathcal {N}}^\pm _r\), i.e, a sequence \(\{u_n\}\subset {\mathcal {N}}^\pm _r\) such that \(I_r(u_n)= c_r+o_n(1)\). Note that, by Lemma 5.6, \((u_n)\) is a bounded sequence in \(W^{1,N}_0(\Omega )\). Then there exists \(u_r\in W^{1,N}_0(\Omega )\) such that, up to a subsequence, \(u_n\rightharpoonup u_r\) in \(W^{1,N}_0(\Omega )\). Arguing as in Lemma 2.3 in Castro et al. (1997), it is possible to show that \(v\mapsto v^\pm \) is a continuous function of \(W_0^{1,N}(\Omega )\) into itself, from which it follows that \(u_n^\pm \rightharpoonup u_r^\pm \) in \(W_0^{1,N}(\Omega )\). Moreover, by Sobolev embeddings,

$$\begin{aligned} \left\{ \begin{array}{lllllll} u^\pm _n\rightarrow u_r^\pm ~~\text {strongly in}~~L^s(\Omega )~~\text {for any}~~~1\le s< +\infty ,\\ u^\pm _n(x)\rightarrow u_r^\pm (x)~~\text {for a.e}~~x\in \Omega . \end{array}\right. \end{aligned}$$
(5.3)

First we are going to show that \(u^\pm _r\ne 0\). In fact, if \(u^\pm _r \equiv 0\) then, using the Lemma 5.6 and that \(I'_r(u_n)u^\pm _n=0\) for all \(n\in {\mathbb {N}}\), we have the following contradiction

$$\begin{aligned} \rho ^N_r\le \displaystyle \int \limits _{\Omega }|\nabla u^\pm _n|^N dx \le \displaystyle \int \limits _{\Omega }| u^\pm _n|^r dx =o_n(1). \end{aligned}$$

It follows from Fatou’s Lemma that

$$\begin{aligned} \displaystyle \int \limits _{\Omega }|\nabla u^\pm _r|^p dx\le \liminf \limits _{n\rightarrow \infty } \displaystyle \int \limits _{\Omega }|\nabla u^\pm _n|^p dx~~\text {and}~~ \displaystyle \int \limits _{\Omega }|\nabla u^\pm _r|^N dx\le \liminf \limits _{n\rightarrow \infty } \displaystyle \int \limits _{\Omega }|\nabla u^\pm _n|^N dx. \end{aligned}$$

Therefore, using compact embedding and Lemma 5.5 we get

$$\begin{aligned} \begin{array}{llllll} c_r\le I_r(t u^{+}_{r} + s u^{-}_{r}) \le \liminf \limits _{n\rightarrow \infty } [~I_r(t u^+_n)+I_r(s u^-_n)~] \le \liminf \limits _{n\rightarrow \infty } [~I_r(u^+_n)+I_r(u^-_n)~]\vspace{0,2cm}\\ ~~~~=\liminf \limits _{n\rightarrow \infty } I_r(u_n)+o_n(1)=c_r. \end{array} \end{aligned}$$

Considering \(w_r= t u^+_r + s u^-_r\), we obtain \(I_r(w_r)=c_r\) and using a Deformation Lemma (Figueiredo and Nunes 2020, Proof of Theorem 1.1), we conclude that \(I'_r(w_r)=0.\) \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, G.S., Figueiredo, G.M. On a Critical Exponential p & N Equation Type: Existence and Concentration of Changing Solutions. Bull Braz Math Soc, New Series 53, 243–280 (2022). https://doi.org/10.1007/s00574-021-00257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-021-00257-6

Keywords

Mathematics Subject Classification

Navigation