Skip to main content
Log in

Tannic Acid for Simple and Highly Selective Visual Detection of Iron (II) and (III) Ions from Different Aqueous Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tannic acid (TA) was employed as a novel colorimetric iron ion sensor. TA showed highly selective recognition for only Fe2+ and Fe3+ among a range of tested metal ions such as Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Hg2+, and Pb2+. In the presence of these metal cation solutions, only Fe2+ and Fe3+ solutions underwent impressive color change detectable with the naked eye from colorless to purple and gray, respectively. Surprisingly, TA behaves as a highly selective sensor upon chemical oxidation of iron (Fe2+ and Fe3+) cations. In addition, various sensor applications of TA were performed. For this, TA-impregnated silica gel, alumina oxide sheet, and filter paper were used. Each test strip showed very high selectivity for iron ions. The detection limit of the sensor for Fe2+ and Fe3+ was found to be 1.0 × 10−6 M, and the association constant Ka was determined as 4.05 × 104 M−1 and 1.80 × 107 M−1. The order of ion binding power was determined to be Fe3+ > Fe2+ by UV-Vis spectroscopy. These discernable color changes due to the complexion of TA with Fe2+ and Fe3+ demonstrated the utilization of TA to selectively detect these metal cations.

Graphical abstract

The use of tannic acid as a complexing agent that can detect Fe (II) and Fe (III) metal ions in environmental waters by colorimetry and spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bravo, V., Gil, S., Costero, A. M., Kneeteman, M. N., Llaosa, U., Mancini, P. M. E., Ochando, L. E., & Parra, M. (2012). A new phenanthrene-based bis-oxime chemosensor for Fe(III) and Cr(III) discrimination. Tetrahedron, 68, 4882–4887.

    Article  CAS  Google Scholar 

  • Çakar, S., & Özacar, M. (2016). Fe–tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 163, 79–88.

    Article  Google Scholar 

  • Chen, L., Tian, X., Xia, D., Nie, Y., Lu, L., Yang, C., & Zhou, Z. (2019). Novel colorimetric method for simultaneous detection and identification of multimetal ions in water: Sensitivity, selectivity, and recognition mechanism. ACS Omega, 4, 5915–5922.

    Article  CAS  Google Scholar 

  • Finelli, A., Chabert, V., Herault, N., Crochet, A., Kim, C., & Fromm, K. M. (2019). Sequential multiple-target sensor: In3+, Fe2+, and Fe3+ discrimination by an anthracene-based probe. Inorganic Chemistry, 58(20), 13796–13806.

    Article  CAS  Google Scholar 

  • Funde, S. G. (2015). Phytochemicals evaluation, anticancer, antioxidant and antimicrobial activity of Acorus calamus different solvent extracts. Journal of Chemical and Pharmaceutical Research, 7(6), 495–504.

    CAS  Google Scholar 

  • GeunJo, T., HeeBok, K., Han, J., HeeLim, M., & Kim, C. (2017). Colorimetric detection of Fe3+ and Fe2+ and sequential fluorescent detection of Al3+ and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution. Dyes and Pigments, 139, 136–147.

    Article  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., & Ashkani, S. (2015). Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia. BMC Complementary and Alternative Medicine, 15, 335.

    Article  Google Scholar 

  • Haav, K., Kadam, S. A., Toom, L., Gale, P. A., Busschaert, N., Wenzel, M., Hiscock, J. R., Kirby, I. L., Haljasorg, T., Lõkov, M., & Leito, I. (2013). Accurate method to quantify binding in supramolecular chemistry. The Journal of Organic Chemistry, 78(16), 7796–7808.

    Article  CAS  Google Scholar 

  • Jaramillo, Á., Briones, L., Andrews, M., Arredondo, M., Olivares, M., Brito, A., & Pizarro, F. (2015). Effect of phytic acid, tannic acid and pectin on fasting iron bioavailability both in the presence and absence of calcium. Journal of Trace Elements in Medicine and Biology, 30, 112–117.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Lee, S. Y., Kang, J. H., Kim, M. S., Kim, A., & Kim, C. (2018). Colorimetric detection of Fe3+/2+ and fluorescent detection of Al3+ in aqueous media: Applications and DFT calculations. Journal of Coordination Chemistry, 71(15), 2401–2414.

    Article  CAS  Google Scholar 

  • Kim, H., Seo, Y., Youn, Y., Lee, H., & Yang, M. (2019). Determination of Fe2+ and Co2+ by a multiple-target colorimetric chemosensor with low detection limit in aqueous solution. Chemistry Select, 4(4), 1199–1204.

    CAS  Google Scholar 

  • Knovich, M. A., Storey, J. A., Coffman, L. G., & Torti, S. V. (2009). Ferritin for the clinician. Blood Reviews, 23(3), 95–104.

    Article  CAS  Google Scholar 

  • Li, J., Wang, Q., Guo, Z., Ma, H., Zhang, Y., Wang, B., Bin, D., & Wei, Q. (2016a). Highly selective fluorescent chemosensor for detection of Fe3+ based on Fe3O4@ZnO. Scientific Reports, 6, 23558. https://doi.org/10.1038/srep23558.

    Article  CAS  Google Scholar 

  • Li, Y. M., Miao, X., Wei, Z. G., Cui, J., Li, S. Y., Han, R. M., Zhang, Y., & Wei, W. (2016b). Iron-tannic acid nanocomplexes: Facile synthesis and application for removal of methylene blue from aqueous solution. Digest Journal of Nanomaterials and Bio structures, 11(4), 1045–1061.

    Google Scholar 

  • Lin, F., Ma, Y., Yanlei, S., Zhang, R., Liu, Y., Zhang, Q., & Jiang, Z. (2015). Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Advances, 5, 107777–107784.

    Article  Google Scholar 

  • Lv, Y. (2016). Spectroscopic study of effects of tetraalkylammonium cations on F-sensing properties of calix [4] pyrrole boradiazaindacene dye. Quimica Nova, 39(7), 832–835.

    Google Scholar 

  • MacCarthy, P. (1978). Simplified experimental route for obtaining Job’s curves. Analytical Chemistry, 50(14), 2165–2165.

    Article  CAS  Google Scholar 

  • Mojzer, E. B., Hrncic, M. K., Skerget, M., Knez, Z., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21, 901.

    Article  Google Scholar 

  • Phiwchai, I., Yuensook, W., Sawaengsiriphon, N., Krungchanuchat, S., & Pilapong, C. (2018). Tannic acid (TA): A molecular tool for chelating and imaging labile iron. European Journal of Pharmaceutical Sciences, 114, 64–73.

    Article  CAS  Google Scholar 

  • Renn, J. S., Tomasevich, L. L., Tallmadge, E. H., & Collum, D. B. (2013). Method of continuous variations: Applications of Job Plots to the study of molecular associations in organometallic chemistry. Angewandte Chemie (International Ed. in English), 52(46n), 11998–12013.

    Article  Google Scholar 

  • Sahiner, N., Sengel, S. B., & Yıldız, M. (2017). A facile preparation of donut-like supramolecular tannic acid-Fe(III) composite as biomaterials with magnetic, conductive and antioxidant properties. Journal of Coordination Chemistry, 70(21), 3619–3632.

    Article  CAS  Google Scholar 

  • Sahoo, S. K., & Crisponi, G. (2019). Recent advances on iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules, 24(18), 3267.

    Article  CAS  Google Scholar 

  • Udhayakumari, D., Suganya, S., Velmathi, S., & MubarakAli, D. (2014). Naked eye sensing of toxic metal ions in aqueous medium using thiophene-based ligands and its application in living cells. Journal of Molecular Recognition, 27(3), 151–159.

    Article  CAS  Google Scholar 

  • Vijan, L. E., & Puica, I. (2010). Spectral study of the interaction between enoxacin and calf thymus DNA. Optpelectronic and Advanced Materials-Rapid Communications, 4(12), 2129–2131.

    CAS  Google Scholar 

  • Wang, S., Cong, T., Lian, Q., Li, Z., & Xu, S. (2015). Dual colorimetric and fluorescent chemosensor of Fe3+and Cu2+ based on 2,5-bis[(4-carboxylic-piperidylamino)thiophenyl]-croconine. Tetrahedron, 71(34), 5478–5483.

    Article  CAS  Google Scholar 

  • Wansapura, C. M., Seliskar, C. J., & Heineman, W. R. (2007). Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 20. Detection of metal ions in different oxidation states. Analytical Chemistry, 79, 5594–5600.

    Article  CAS  Google Scholar 

  • Widsten, P., Cruz, C. D., Fletcher, G. C., Pajak, M. A., & McGhie, T. K. (2014). Tannins and extracts of fruit byproducts: Antibacterial activity against foodborne bacteria and antioxidant capacity. Journal of Agricultural and Food Chemistry, 62(46), 11146–11156.

    Article  CAS  Google Scholar 

  • Yıldız, M., Demir, N., Ünver, H., & Sahiner, N. (2017). Synthesis, characterization, and application of a novel water-soluble polyethylenimine-based Schiff base colorimetric chemosensor for metal cations and biological activity. Sensors and Actuators B, 252, 55–61.

    Article  Google Scholar 

  • Zhu, F., Chu, X., Wang, H., Zhang, X., Zhang, Y., Liu, Z., Guo, H., Liu, H., Liu, Y., Chu, L., & Zhang, J. (2016). New findings on the effects of tannic acid: Inhibition of L-type calcium channels, calcium transient and contractility in rat ventricular myocytes. Phytotherapy Research, 30(3), 510–516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Yıldız or Nurettin Sahiner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, M., Sahiner, N. Tannic Acid for Simple and Highly Selective Visual Detection of Iron (II) and (III) Ions from Different Aqueous Environments. Water Air Soil Pollut 232, 201 (2021). https://doi.org/10.1007/s11270-021-05116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05116-0

Keywords

Navigation