Skip to main content

Advertisement

Log in

Effects of Green Waste Compost Addition to Dredged Sediments of the Matanza-Riachuelo River (Argentina) on Heavy Metal Extractability and Bioaccumulation in Lettuce (Lactuca sativa)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil amendments can be an effective and low-cost treatment to reduce metal bioavailability of contaminated dredged sediments disposed on land. The effect of green waste compost addition on Cu, Cr, Ni, Pb, and Zn extractability and bioaccumulation in lettuce was studied in a greenhouse experiment, using dredged sediments from different sites of the Matanza-Riachuelo River (Argentina). Moreover, the effect of compost addition in lettuce morphological and biochemical variables was analyzed. The treatments were prepared by adding 15% and 30% of compost to the sediments (w/w), and untreated sediments were used as controls. Metal concentrations in lettuce shoots and metals extracted by DTPA correlated significantly. In the site where the land use is mainly agriculture and cattle grazing, compost addition did not affect the accumulation of metals in lettuce. Conversely, in site where the land use is peri-urban and industrial, compost addition decreased Cr, Ni, Pb, and Zn concentrations in lettuce, similar for both treatments. In particular, in the basin’s more industrialized and densely populated site, the addition of 30% compost to the sediment was more effective in reducing the metals bioaccumulation and improving morphological variables and chlorophyll content in lettuce shoots. The results presented in this study show that the addition of soil amendments, particularly of 30% of green waste compost, can improve the physicochemical properties enabling, for instance, a controlled disposal scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adejumo, S. A., Ogundiran, M. B., & Togun, A. O. (2018). Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. J Environ Chem Eng, 6, 4809–4819. https://doi.org/10.1016/j.jece.2018.07.027.

    Article  CAS  Google Scholar 

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142. https://doi.org/10.1016/j.geoderma.2004.01.003.

    Article  CAS  Google Scholar 

  • Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., & Beolchini, F. (2015). A review of approaches and techniques used in aquatic contaminated sediments : Metal removal and stabilization by chemical and biotechnological processes. J Clean Prod, 86, 24–36. https://doi.org/10.1016/j.jclepro.2014.08.009.

    Article  CAS  Google Scholar 

  • Bolan, N. S., & Duraisamy, V. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals : A review involving specific case studies. Aust J Soil Res, 41, 533–555.

    Article  CAS  Google Scholar 

  • Bursztyn Fuentes, A. L., José, C., de los Ríos, A., do Carmo, L. I., de Iorio, A. F., & Rendina, A. E. (2018). Phytoextraction of heavy metals from a multiply contaminated dredged sediment by chicory (Cichorium intybus L.) and castor bean (Ricinus communis L.) enhanced with EDTA, NTA, and citric acid application. Int J Phytoremediation, 20. https://doi.org/10.1080/15226514.2018.1524826.

  • Clemente, R. (2006). A remediation strategy based on active phytoremediation followed by natural attenuation in a soilcontaminated by pyrite waste. Environ Pollut, 143(3), 397–406. https://doi.org/10.1016/j.envpol.2005.12.011.

    Article  CAS  Google Scholar 

  • Clijsters, I., & Van Assche, F. (1985). Inhibition of photosynthesis by heavy metals II. Photosynth Res, 7, 31–40.

    Article  CAS  Google Scholar 

  • Cramer, G. R., Epstein, E., & Lauchli, A. (1990). Effects of sodium, potassium and calcium on salt-stressed barley. I. Growth analysis. Physiol Plant, 80, 83–88.

    Article  CAS  Google Scholar 

  • Davies, B. (1974). Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am Proc, 38, 150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046x.

    Article  Google Scholar 

  • Davis, R. D. (1979). Uptake of copper, nickel and zinc by crops growing in contaminated soils. J Sci Food Agric, 30, 937–947.

    Article  CAS  Google Scholar 

  • Derakhshan, Z., Myung, N., & Jung, C. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health, 40, 927–953. https://doi.org/10.1007/s10653-017-9964-z.

    Article  CAS  Google Scholar 

  • Dhamodharan, A., Abinandan, S., Aravind, U., Ganapathy, G. P., & Shanthakumar, S. (2019). Distribution of metal contamination and risk indices assessment of surface sediments from Cooum River, Chennai, India. Int J Environ Res, 1–5. https://doi.org/10.1007/s41742-019-00222-8.

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of Soil Analysis. Part I (pp. 383–421). American Society of Agronomy and Academic Press.

  • Gomes, S., de Lima, S. M., de Souza, A. V., Nascimento, J., & Nascimento, E. (2014). Chloroplast pigments as indicators of lead stress. Eng Agríc Jaboticabal, 34, 877–884.

  • Hattab, N., Motelica-Heino, M., Faure, O., & Bouchardon, J. L. (2015). Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J Environ Manag, 159, 37–47. https://doi.org/10.1016/j.jenvman.2015.05.012.

    Article  CAS  Google Scholar 

  • HWAA. (1993). Federal hazardous waste Act of Argentina 24,051, 86 Regulatory Decree No 831/93, Annex II. Available in: https://www.argentina.gob.ar/normativa/nacional/decreto-831-1993-12830/normas-modifican.

  • Jean, A., & Folefack, J. (2009). The substitution of mineral fertilizers by compost from household waste in Cameroon: Economic analysis with a partial equilibrium model. Waste Manag Res. https://doi.org/10.1177/0734242X08090403.

  • Jiménez-morales, V. D., Trejo-téllez, L. I., Gómez-merino, F. C., & Volke-haller, V. H. (2014). Simulation models of lettuce growth in response to organic and mineral fertilization. Rev Fitotec Mex, 37, 249–254.

    Google Scholar 

  • Jordao, C. P., Nascentes, C. C., Cecon, P. R., Fontes, R. L. F., & Pereira, J. L. (2006). Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit Assess, 112, 309–326. https://doi.org/10.1007/s10661-006-1072-y.

    Article  CAS  Google Scholar 

  • Kaschl, A., El-Nahhal, Y., Safi, J., Chen, Y., Römheld, V., & Chen, Y. (2001). Trace metal leaching after municipal solid waste compost application to a sandy soil in the Gaza Strip. 6th International Conference Biogeochemistry Trace Elements (p. 164).

    Google Scholar 

  • Knox, A., Seaman, J., Mench, M., & Vangronsveld, J. (2000). Remediation of metal-and radionuclides-contaminated soils by in situ stabilization techniques. In Environmental Restoration of Metals-Contaminated Soils (pp. 21–60). Lewis.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci Soc Am J, 42, 421–428.

    Article  CAS  Google Scholar 

  • Magdaleno, A., Mendelson, A., Fabrizio, A., Iorio, D., Rendina, A., Moretton, J., (2008). Genotoxicity of leachates from highly polluted lowland river sediments destined for disposal in landfill. Waste management (New York, N.Y.). 28. 2134-9. https://doi.org/10.1016/j.wasman.2007.09.027

  • Mahmoud, M., Ahmed, M., Mazen, M. B., & Nafady, N. A. (2017). Bioavailability of cadmium and nickel to Daucus carota L . and Corchorus olitorius L. treated by compost and microorganisms. Soil Environ, 36, 1–12. https://doi.org/10.25252/SE/17/41160.

    Article  Google Scholar 

  • Masarirambi, M. T., Hlawe, M. M., Oseni, O. T., Thokozile, E., & Fax, T. (2010). Effects of organic fertilizers on growth , yield , quality and sensory evaluation of red lettuce (Lactuca sativa L.) ‘ Veneza Roxa ’. Agric Biol J N Am, 1319–1324. https://doi.org/10.5251/abjna.2010.1.6.1319.1324.

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and Microbiological Properties (pp. 199–224). American Society of Agronomy, Soil Science Society of America.

  • Miller, R. O. (1998). Nitric-perchloric wet acid digestion in an open vessel. In Y. P. Kalra (Ed.), Handbook of Reference Methods for Plant Analysis (pp. 57–62). CRC Press.

  • Niroshika, K., Shaheen, S. M., & Chen, S. S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ Int, 134, 1–29. https://doi.org/10.1016/j.envint.2019.105046.

    Article  CAS  Google Scholar 

  • Norén, A., Karlfeldt, K., Strömvall, A., Rauch, S., & Andersson-sköld, Y. (2020). Integrated assessment of management strategies for metal-contaminated dredged sediments – What are the best approaches for ports, marinas and waterways? Sci Total Environ, 716, 1–14. https://doi.org/10.1016/j.scitotenv.2019.135510.

    Article  CAS  Google Scholar 

  • OECD. (2006). Test No. 208: Terrestrial plant test: seedling emergence and seedling growth test. In OECD guidelines for the testing of chemicals, Section 2. OECD Publishing. https://doi.org/10.1787/9789264070066-en.

  • Peng, J., Song, Y., Yuan, P., Cui, X., & Qiu, G. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials., 161, 633–640. https://doi.org/10.1016/j.jhazmat.2008.04.061.

    Article  CAS  Google Scholar 

  • Peng, W., Li, X., Xiao, S., & Fan, W. (2018). Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments, 18, 1701–1719. https://doi.org/10.1007/s11368-018-1921-7.

    Article  CAS  Google Scholar 

  • Rebechini, H. M., & Hanzel, Y. (1974). Lead-induced ultrastructural changes in ch1oroplasts of the hydrophyte, Ceratophyllum demersum. Z Pflanzenphysiol, 73, 377–386. https://doi.org/10.1016/S0044-328X(74)80106-6.

    Article  CAS  Google Scholar 

  • Rendina, A., & De Iorio, A. F. (2012). Heavy metal partitioning in bottom sediments of the Matanza-Riachuelo River and main tributary streams heavy metal partitioning in bottom sediments of the Matanza-Riachuelo River and main. Soil Sediment Contam An Int J, 21, 62–81. https://doi.org/10.1080/15320383.2012.636776.

    Article  CAS  Google Scholar 

  • Rendina, A., Barros, M. J., Iorio, A. .F. . De., Rendina, A., Barros, J., & Iorio, A. .F. . De. (2015). Changes in the speciation, partitioning and phytoavailability of chromium induced by organic soil amendments. Chemical Speciation & Bioavailability, 23(1), 53–60. https://doi.org/10.3184/095422911X12971977268431.

  • Rhoades, J. D. (1982a). Soluble salts. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (pp. 167–179). American Society of Agronomy.

  • Rhoades, J. D. (1982b). Cation exchange capacity. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (pp. 167–179). American Society of Agronomy.

  • Rotondo, R., Firpo, I. T., Ferreras, L., Toresani, S., Gómez, S. F. E., Agrarias, F. D. C., Nacional, U., Cc, D. R., & De Cultivos, S. S. (2009). Efecto de la aplicación de enmiendas orgánicas y fertilizante nitrogenado sobre propiedades edáficas y productividad en cultivos hortícolas. Horticultura, 28, 18–25.

    Google Scholar 

  • Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environ Geochem Health, 27, 289–300. https://doi.org/10.1007/s10653-004-5977-5.

    Article  CAS  Google Scholar 

  • Singh, S. P., Tack, F. M. G., & Verloo, M. G. (2015). Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments. Chem Speciat Bioavailab, 8, 105–110.

    Article  Google Scholar 

  • Sitko, K., Rusinowski, S., Corso, M., Hermans, C., & Verbruggen, N. (2019). Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front Plant Sci, 10, 1–13. https://doi.org/10.3389/fpls.2019.00748.

    Article  Google Scholar 

  • Smith, S. R. (2009). Review article A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int, 35, 142–156. https://doi.org/10.1016/j.envint.2008.06.009.

    Article  CAS  Google Scholar 

  • Tambasco, G., Sauvé, S., Cook, N., Mcbride, M., & Hendershot, W. (2000). Phytoavailability of Cu and Zn to lettuce (Lactuca sativa) in contaminated urban soils. Canadian Journal of Soil Science. 80(2), 309–317. https://doi.org/10.4141/S99-032.

  • Taylor, P., Liang, J., & Schoenau, J. J. (2006). Development of resin membranes as a sensitive indicator of heavy metal toxicity in the soil environment. Int J Environ Anal Chem, 59, 265–275. https://doi.org/10.1080/03067319508041333.

    Article  Google Scholar 

  • USEPA (1998). Contaminated sediment management strategy. Office of the Federal Register, National Archives and Records Administration. Federal Register 63(87).

  • Wang, R., Shafi, M., Ma, J., Zhong, B., Guo, J., Hu, X., Weijie Xu, W., Yang, Y., Ruan, Z., Wang, Y., Ye, Z., & Liu, D. (2018). Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environ Sci Pollut Res, 25, 28695–28704.

    Article  CAS  Google Scholar 

  • Zeng, G., Wan, J., Huang, D., Hu, L., & Huang, C. (2017). Precipitation , adsorption and rhizosphere effect : The mechanisms for phosphate-induced Pb immobilization in soils — A review. J Hazard Mater, 339, 354–367. https://doi.org/10.1016/j.jhazmat.2017.05.038.

    Article  CAS  Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal, 41, 820–831.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Luis Ignacio Do Carmo acknowledges the master’s scholarship UBACyT (2015–1018).

Funding

This study was supported by the University Buenos Aires in the frame of project UBACyT 20020130100715BA (2014-2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Luis Ignacio do Carmo, Amalia Lara Bursztyn Fuentes, and Alicia Elena Rendina. The first draft of the manuscript was written by Luis Ignacio do Carmo. Alejandra de los Ríos and Alicia Fabrizio de Iorio commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luis Ignacio do Carmo.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Carmo, L.I., Bursztyn Fuentes, A.L., de los Ríos, A. et al. Effects of Green Waste Compost Addition to Dredged Sediments of the Matanza-Riachuelo River (Argentina) on Heavy Metal Extractability and Bioaccumulation in Lettuce (Lactuca sativa). Water Air Soil Pollut 232, 200 (2021). https://doi.org/10.1007/s11270-021-05161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05161-9

Keywords

Navigation