Skip to main content

Advertisement

Log in

Statistical Optimization of Poly-β-Hydroxybutyrate Biosynthesis Using the Spent Mushroom Substrate by Bacillus tequilensis PSR-2

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Poly-β-hydroxybutyrate (PHB) belonging to the polyhydroxyalkanoates family is a natural polyester used as a biodegradable plastic for various commercial applications. In this study, soil samples from the vegetable oil processing industry were used to screen for PHB-producing bacteria using Sudan black B staining. Among the isolated bacteria, PHB positive PSR-2 isolate was chosen as a potent PHB producer. The phylogenetic tree revealed that the PSR-2 isolate has a high 16S rRNA gene sequence similarity of 99.9% with Bacillus tequilensis. The PHB content of 2.8 ± 0.09 g/L was produced by PSR-2 isolate in 48 h in a nutrient broth medium containing 1% glucose compared to the PHB production of 1.6 ± 0.08% by the reference strain, Bacillus circulans. Taguchi method was used to optimize PHB production using the alkali-pretreated spent mushroom substrate of sugarcane bagasse (SMS-SB) as an additional carbon substrate along with other energy sources. The optimized factors in the contribution of PHB production from the highest- to the lowest-ranking are as follows: alkali-pretreated SMS-SB, glucose, glycerol, peptone, ammonium chloride, and potassium dihydrogen phosphate at 30 ºC, pH 7.0, which resulted in the production of 12.4 ± 0.95 g/L PHB was higher than the predicted value of 11.59 g/L. The synthesized PHB was characterized using Ultraviolet–visible spectrophotometry, Fourier transform infrared spectrometry, differential scanning calorimetry, thermogravimetric analysis, nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry. The results revealed the presence of hydroxyl (–OH), methyl (–CH3), methine (=CH–), methylene (–CH2–) and ester carbonyl (>C=O) groups, which confirmed the PHB structure. Thus, alkali-pretreated SMS-SB plays a significant role as an energy substrate for the production of PHB. This gives the knowledge to utilize cost-effective lignocellulosic agro-waste materials as a feedstock for the sustainable production of biodegradable PHB for many biomedical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C.: Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv. Biochem. Eng. Biotechnol. 41, 77–93 (1990)

    Google Scholar 

  2. Gadgil, B.S.T., Killi, N., Rathna, G.V.N.: Polyhydroxyalkanoates as biomaterials. Med. Chem. Commun. 8, 1774–1787 (2017)

    Google Scholar 

  3. Rydz, J., Sikorska, W., Kyulavska, M., Christova, D.: Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16, 564–596 (2014)

    Google Scholar 

  4. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V.: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808 (2014)

    Google Scholar 

  5. Howells, E.R.: Opportunities in biotechnology for the chemical industry. Chem. Ind. (Lond) 7, 508–551 (1982)

    Google Scholar 

  6. Jendrossek, D.: Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J. Bacteriol. 191, 3195–3202 (2009)

    Google Scholar 

  7. Li, Z., Yang, J., Loh, X.J.: Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 8, e265 (2016)

    Google Scholar 

  8. Koller, M.: Linking food industry to “green plastics”—polyhydroxyalkanoate (PHA) biopolyesters from agro-industrial by-products for securing food safety. Appl. Food Biotechnol. 6, 1–6 (2019)

    Google Scholar 

  9. Brigham, C.J., Riedel, S.L.: The potential of polyhydroxyalkanoate production from food wastes. Appl. Food Biotechnol. 6, 7–18 (2019)

    Google Scholar 

  10. Cinelli, P., Mallegni, N., Gigante, V., Montanari, A., Seggiani, M., Coltelli, M.B., Bronco, S., Lazzeri, A.: Biocomposites based on polyhydroxyalkanoates and natural fibres from renewable byproducts. Appl. Food Biotechnol. 6, 35–43 (2019)

    Google Scholar 

  11. Favaro, L., Basaglia, M., Rodriguez, J.E.G., Morelli, A., Ibraheem, O., Pizzocchero, V., Casella, S.: Bacterial production of PHAs from lipid-rich by-products. Appl. Food Biotechnol. 6, 45–52 (2019)

    Google Scholar 

  12. Kumar, P., Kim, B.S.: Paracoccus sp. strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl. Food Biotechnol. 6, 53–60 (2019)

    Google Scholar 

  13. Rebocho, A.T., Pereira, J.R., Freitas, F., Neves, L.A., Alves, V.D., Sevrin, C., Grandfils, C., Reis, M.A.M.: Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 6, 71–82 (2019)

    Google Scholar 

  14. Bozorg, A., Vossoughi, M., Kazemi, A., Alemzadeh, I.: Optimal medium composition to enhance poly-β-hydroxybutyrate production by Ralstonia eutropha using cane molasses as sole carbon source. Appl. Food Biotechnol. 2, 39–47 (2015)

    Google Scholar 

  15. Pernicova, I., Enev, V., Marova, I., Obruca, S.: Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Appl. Food Biotechnol. 6, 83–90 (2019)

    Google Scholar 

  16. Koller, M., Shahzad, K., Braunegg, G.: Waste streams of the animal-processing industry as feedstocks to produce polyhydroxyalkanoate biopolyesters. Appl. Food Biotechnol. 5, 193–203 (2018)

    Google Scholar 

  17. Koller, M., Marsalek, L.: Principles of glycerol-based polyhydroxyalkanoate production. Appl. Food Biotechnol. 2, 3–10 (2015)

    Google Scholar 

  18. Khosravi-Darani, K., Mokhtari, Z.B., Amai, T., Tanaka, K.: Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl. Microbiol. Biotechnol. 97, 1407–1424 (2013)

    Google Scholar 

  19. Mokhtari-Hosseini, Z.B., Vasheghani-Farahani, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati, S.A., Karimzadeh, R., Khosravi-Darani, K.: Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour. Technol. 100, 2436–2443 (2009)

    Google Scholar 

  20. Khosravi-Darani, K., Yazdian, F., Babapour, F., Amirsadeghi, A.R.: Poly(3-hydroxybutyrate) production from natural gas by a methanotroph native bacterium in a bubble column bioreactor. Chem. Biochem. Eng. Q. 33, 69–77 (2019)

    Google Scholar 

  21. Shahhosseini, S., Sadeghi, M.T., Khosravi-Darani, K.: Simulation and model validation of batch PHB production process using Ralstonia eutropha. Iran. J. Chem. & Chem. Eng. 22, 35–41 (2003)

    Google Scholar 

  22. Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A.: Application of the Plackett-Burman statistical design to optimize poly(β-hydroxybutyrate) production by Ralstonia eutropha in batch culture. Iran. J. Biotechnol. 1, 155–161 (2003)

    Google Scholar 

  23. Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A., Yamini, Y.: Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly(R-hydroxybutyrate) recovery. Biotechnol. Prog. 20, 1757–1765 (2004)

    Google Scholar 

  24. Khosravi-Darani, K., Vasheghani-Farahani, E., Shojaosadati, S.A.: Application of the Taguchi design for production of poly(β-hydroxybutyrate) by Ralstonia eutropha. Iran. J. Chem. Chem. Eng. 23, 131–136 (2004)

    Google Scholar 

  25. Penkhrue, W., Jendrossek. D., Khanongnuch, C., Pathom-aree, W., Aizawa T., Behrens, R.L., Lumyong, S.: Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15, e0230443 (2020)

  26. Paula, F.S., Tatti, E., Abram, F., Wilson, J., O’Flaherty, V.: Stabilization of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag. 196, 476–486 (2017)

    Google Scholar 

  27. Rinker, D.L.: Spent mushroom substrate uses: technology and applications. In Edible and medicinal mushrooms: technology and applications (First edition), pp. 427–454. Wiley, New York (2017)

    Google Scholar 

  28. Mostafa, Y.S., Alrumman, S.A., Otaif, K.A., Alamri, S.A., Mostafa, M.S., Sahlabji, T.: Production and characterization of bioplastic of polyhydroxybutyrate accumulating Erythrobacter aquimaris isolated from Mangrove rhizosphere. Molecules 25, 179 (2020)

    Google Scholar 

  29. Mohandas, S.P., Balan, L., Lekshmi, N., Cubelio, S.S., Philip, R., Singh, I.S.B.: Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J. Appl. Microbiol. 122, 698–707 (2016)

    Google Scholar 

  30. El-malek, F.A., Khairy, H., Farag, A., Omar, S.: The sustainability of microbial bioplastics, production and applications. Int. J. Biol. Macromol. 157, 319–328 (2020)

    Google Scholar 

  31. Yang, M., Baral, N.R., Simmons, B.A., Mortimer, J.C., Shih, P.M., Scown, C.D.: Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proc. Natl. Acad. Sci. U.S.A. 117, 8639–8648 (2020)

    Google Scholar 

  32. Mohapatra, S., Maity, S., Dash, H.R., Das, S., Pattnaik, S., Rath, C.C., Samantaray, D.: Bacillus and biopolymer: prospects and challenges. Biochem. Biophys. Rep. 12, 206–213 (2017)

    Google Scholar 

  33. Annamalai, N., Al-Battashi, H., Al-Bahry, S., Sivakumar, N.: Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. J. Biotechnol. 265, 25–30 (2018)

    Google Scholar 

  34. Al-Battashi, H.S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B.N., Nguyen, Q.D., Gupta, V.K.: Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 18, 183–205 (2019)

    Google Scholar 

  35. Abdol-Fotouh, D., Hassan, M.A., Shokry, H., Roig, A., Azab, M.S., Kashyout, A.E.B.: Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 10, 3491 (2020)

    Google Scholar 

  36. Kawaguchi, H., Ogino, C., Kondo, A.: Microbial conversion of biomass into bio-based polymers. Bioresour. Technol. 245, 1664–1673 (2017)

    Google Scholar 

  37. Byrom, J., Byrom, D.: Biopol–nature’s plastic. NCBE Newsl. 9–11 (1991)

  38. Law, J.H., Slepecky, R.A.: Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82, 33–36 (1961)

    Google Scholar 

  39. Hassan, M.A., Amara, A.A., Abuelhamd, A.T., Haroun, B.: Leucocytes show improvement growth on PHA polymer surface. Pak. J. Pharm. Sci. 23, 332–336 (2010)

    Google Scholar 

  40. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T.: Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore (1994)

    Google Scholar 

  41. Kovaks, N.: Identification of Pseudomonas pyncyanea by the oxidase reaction. Nature (Lond) 178, 703 (1956)

    Google Scholar 

  42. Graham, P.H., Parker, C.A.: Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20, 383–396 (1964)

    Google Scholar 

  43. Naik, P.R., Raman, G., Narayanan, K.B., Sakthivel, N.: Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8, 1–14 (2008)

    Google Scholar 

  44. Wang, Y., Zhou, X.H., Hu, J.J., Zhang, Q.G.: Study on extraction and identification of PHB from H2 production fermentation residue by photosynthetic bacteria. Adv. Mater. Res. 518–523, 108–115 (2012)

    Google Scholar 

  45. Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991)

    Google Scholar 

  46. Hassan, M.A., Tamer, T.M., Rageh, A.A., Abou-Zeid, A.M., El-Zaher, E.H.F.A., Kenawy. E.R.: Insight into multidrug-resistant microorganisms from microbial infected diabetic foot ulcers. Diabetes Metab. Syndr. Clin. Res. Rev. 13, 1261–1270 (2019)

  47. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)

    Google Scholar 

  48. Zhu, H.J., Liu, J.H., Sun, L.F., Hu, Z.F., Qiao, J.J.: Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresour. Technol. 136, 257–266 (2013)

    Google Scholar 

  49. Dence, C.W.: The determination of lignin. In: Lin, S.Y., Dence, A., Carlton, W. (eds.) Methods in Lignin Chemistry, pp. 33–61. Springer, Berlin (1992)

    Google Scholar 

  50. Deschatelets, L., Yu, E.K.C.: A simple pentose assay for biomass conversion studies. Appl. Microbiol. Biotechnol. 24, 379–385 (1986)

    Google Scholar 

  51. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  52. Updegraff, D.M.: Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol. Bioeng. 13, 77–97 (1971)

    Google Scholar 

  53. Grömping, U.: R package DoE.base for factorial experiments. J. Stat. Softw. 85, 1–41 (2018)

  54. R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/

  55. RStudio Team.: RStudio: Integrated development for R. RStudio, PBC, Boston, MA (2020). https://rstudio.com/

  56. Bhuwal, A.K., Singh, G., Aggarwal, N.K., Goyal, V., Yadav, A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013, 752821 (2013)

  57. Ansari, S., Fatma, T.: Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS ONE 11, 1–20 (2016)

    Google Scholar 

  58. Hamamura, N., Olson, S.H., Ward, D.M., Inskeep, W.P.: Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl. Environ. Microbiol. 72, 6316–6324 (2006)

    Google Scholar 

  59. Sabirova, J.: Polyhydroxyalkanoates produced by hydrocarbon-degrading bacteria. In: Timmis, K.N. (ed.) Handbook of Hydrocarbon and Lipid Microbiology, pp. 2981–2894. Springer, Berlin (2010)

    Google Scholar 

  60. Reyes, G.D., So, R.S., Ulep, M.M.: Isolation, screening and identification of bacteria for poly-β-hydroxybutyrate (PHB) production. Studies Environ. Sci. 66, 737–748 (1997)

    Google Scholar 

  61. Gatson, J.W., Benz, B.F., Chandrasekaran, C., Satomi, M., Venkateswaran, K., Hart, M.E.: Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int. J. Syst. Evol. Microbiol. 56, 1475–1484 (2006)

  62. Aarti, C., Khusro, A.: Discovery of polygalacturonase producing Bacillus tequilensis strain armati using 16S rRNA gene sequencing. Asian J. Pharm. Clin. Res. 8, 58–62 (2015)

    Google Scholar 

  63. Janda, J.M., Abbott, S.L.: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764 (2007)

    Google Scholar 

  64. Bavykin, S.G., Mikhailovich, V.M., Zakharyev, V.M., Lysov, Y.P., Kelly, J.J., Alferov, O.S., Gavin, I.M., Kukhtin, A.V., Jackman, J., Stahl, D.A., Chandler, D., Mirzabekov, A.D.: Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray. Chem. Biol. Interact. 171, 212–235 (2008)

    Google Scholar 

  65. Alarfaj, A.A., Arshad, M., Sholkamy, E.N., Munusamy, M.A.: Extraction and characterization of polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 isolated from mangrove environments of Saudi Arabia. Braz. Arch. Biol. Technol. 58, 781–788 (2015)

    Google Scholar 

  66. Loow, Y.L., Wu, T.Y., Jahim, J.M., Mohammad, A.W., Teoh, W.H.: Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23, 1491–1520 (2016)

    Google Scholar 

  67. Bensah, E.C., Mensah, M.: Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng. 2013, 719607 (2013)

  68. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Google Scholar 

  69. Nuchdang, S., Thongtus, V., Khemkhao, M., Kirdponpattara, S., Moore, E.J., Setiabudi, H.D.B., Phalakornkule, C.: Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00624-1

    Article  Google Scholar 

  70. Saratale, R.G., Saratale, G.D., Cho, S.K., Kim, D.S., Ghodake, G.S., Kadam, A., Kumar, G., Bharagava, R.N., Banu, R., Shin, H.S.: Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresour. Technol. 282, 75–80 (2019)

  71. Getachew, A., Woldesenbet, F.: Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 9, 509 (2016)

    Google Scholar 

  72. Wang, X., Xia, K., Yang, X., Tang, C.: Growth strategy of microbes on mixed carbon sources. Nat. Commun. 10, 1279 (2019)

    Google Scholar 

  73. Dalsasso, R.R., Pavan, F.A., Bordignon, S.E., de Aragao, G.M.F., Poletto, P.: Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochem. 85, 12–18 (2019)

    Google Scholar 

  74. Werlang, E.B., Moraes, L.B., Muller, M.V.G., Julich, J., Corbellini, V.A., Neves, F.D.F., de Souza, D., Benitez, L.B., Schneider, R.D.D.: Polyhydroxybutyrate (PHB) production via bioconversion using Bacillus pumilus in liquid phase cultivation of the biomass of Arthrospira platensis hydrolysate as a carbon source. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01213-z

    Article  Google Scholar 

  75. Hassan, M.A., Bakhiet, E.K., Hussein, H.R., Ali, S.G.: Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. Int. J. Environ. Sci. Technol. 16, 3497–3512 (2019)

    Google Scholar 

  76. Hassan, M.A., Bakhiet, E.K., Ali, S.G., Hussien, H.R.: Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J. Appl. Pharm. Sci. 6, 46–51 (2016)

    Google Scholar 

  77. Fei, N.C., Mehat, N.M., Kamaruddin, S.: Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Ind. Eng. 2013, 462174 (2013)

    Google Scholar 

  78. Aramvash, A., Shahabi, Z.A., Aghjeh, S.D., Ghafari, M.D.: Statistical physical and nutrient optimization of bioplastic polyhydroxybutyrate production by Cupriavidus necator. Int. J. Environ. Sci. Technol. 12, 2307–2316 (2015)

    Google Scholar 

  79. Mori, T., Tsai, S.C.: Taguchi Methods: Benefits, Impacts, Mathematics, Statistics, and Applications. ASME Press, New York (2011)

    Google Scholar 

  80. Kacker, R.N., Lagergren, E.S., Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst. Stand. Technol. 96, 577–591 (1991)

    Google Scholar 

  81. Roy, R.K.: A primer on the Taguchi method, 2nd ed. In Society of Manufacturing Engineers, MI, USA (2010)

  82. Wei, Y.H., Chen, W.C., Huang, C.K., Wu, H.S., Sun, Y.M., Lo, C.W., Janarthanan, O.M.: Screening and evaluation of polyhydroxybutyrate producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int. J. Mol. Sci. 12, 252–265 (2011)

    Google Scholar 

  83. Weisberg, J.F., Weisberg, S.: An R Companion to Applied Regression, 3rd edn. Sage, Thousand Oaks (2019)

    MATH  Google Scholar 

  84. Israni, N., Shivakumar, S.: Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: statistical optimization and characterization. Int. J. Biol. Macromol. 148, 20–30 (2020)

    Google Scholar 

  85. Madhusoodanan, G., Selvaraj, S., Sarvajna, S.K., Hariharapura, R.C., Somashekhar, D.M.: Steering of β oxidation intermediates to polyhydroxyalkanoate copolymer biosynthesis by fatty acids and inhibitors using Taguchi design. Int. J. Environ. Sci. Technol. 17, 2853–2864 (2020)

    Google Scholar 

  86. Suryawanshi, S.S., Sarje, S.S., Loni, P.C., Bhujbal, S., Kamble, P.P.: Bioconversion of sugarcane molasses into bioplastic (polyhydroxybutyrate) using Bacillus cereus 2156 under statistically optimized culture conditions. Anal. Chem. Lett. 10, 80–92 (2020)

    Google Scholar 

  87. Gouda, M.K., Swellam, A.E., Omar, S.H.: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156, 201–207 (2001)

    Google Scholar 

  88. Ugur, A., Sahin, N., Beyatli, Y.: Accumulation of poly-b-hydroxybutyrate in Streptomyces species during growth with different nitrogen sources. Turk. J. Biol. 26, 171–174 (2002)

    Google Scholar 

  89. Sayyed, R.Z., Wani, S.J., Alarfaj, A.A., Syed, A., El-Enshasy, H.A.: Production, purification and evaluation of biodegradation potential of PHB depolymerase of Stenotrophomonas sp. RZS7. PLoS ONE 15, e0220095 (2020)

    Google Scholar 

  90. Nair, A.M., Annamalai, K., Kannan, S.K., Kuppusamy, S.: Characterization of polyhydroxyalkanoates produced by Bacillus subtilis isolated from soil samples. Malaya J. Biosci. 1, 8–12 (2014)

    Google Scholar 

  91. Mohapatra, S., Sarkar, B., Samantaray, D.P., Daware, A., Maity, S., Pattnaik, S., Bhattacharjee, S.: Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 38, 3201–3208 (2017)

    Google Scholar 

  92. Pradhan, S., Borah, A.J., Poddar, M.K., Dikshit, P.K., Rohidas, L., Moholkar, V.S.: Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresour. Technol. 242, 304–310 (2017)

    Google Scholar 

  93. Sabarinathan, D., Chandrika, S.P., Venkatraman, P., Easwaran, M., Sureka, C.S., Preethi, K.: Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Inform. Med. Unlocked 11, 61–67 (2018)

    Google Scholar 

  94. Yu, I., Ebrahimi, T., Hatzikiriakos, S.G., Mehrkhodavandi, P.: Star-shaped PHB–PLA block copolymers: immortal polymerization with dinuclear indium catalysts. Dalton Trans. 44, 14248–14254 (2015)

    Google Scholar 

  95. Mayeli, N., Motamedi, H., Heidarizadeh, F.: Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source. Braz. Arch. Biol. Technol. 58, 643–650 (2015)

    Google Scholar 

  96. El-Sheekh, M.M., El-Abd, M.A., El-Diwany, A.I., Ismail, A.M.S., Mohsen, S., Omar, T.H.: Poly-3-hydroxybutyrate (PHB) production by Bacillus flexus ME-77 using some industrial wastes. Rend. Lincei 26, 109–119 (2015)

    Google Scholar 

  97. Juengert, J.R., Bresan, S., Jendrossek, D.: Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile red staining. Bio-Protoc. 8, 2748 (2018)

    Google Scholar 

  98. Riis, V., Mai, W.: Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J. Chromatogr. A 445, 285–289 (1988)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST), Government of India for fellowship support through Innovation in Science Pursuit for Inspired Research (INSPIRE) program (IF150441), and the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (#2019R1I1A3A01062440). We are also grateful to Prof. John Lawson, Brigham Young University, Provo, UT, USA for assistance with R statistical programming, and Dr. Sankar Ganesh Devaraj, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India for GC-MS data analysis.

Funding

The work was supported by DST (Department of Science and Technology, Government of India) and NRF (National Research Foundation of Korea, South Korea; Grant No. #2019R1I1A3A01062440).

Author information

Authors and Affiliations

Authors

Contributions

KS: conceptualization, project administration, funding acquisition, methodology, & writing—original draft. KBN: validation, investigation, data curation, formal analysis, & final draft preparation. UR: analysis of report & investigation. CER: experimental data analysis & interpretation of data. GP: statistical analysis, contribution in manuscript preparation, content preparation & supervision. GV: troubleshooting & formal analysis. AV: interpretation of data and formal analysis. MK: manuscript review & editing. KR: manuscript draft, interpretation of data & supervision.

Corresponding authors

Correspondence to Kannan Badri Narayanan or Gandhi Premkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susithra, K., Narayanan, K.B., Ramesh, U. et al. Statistical Optimization of Poly-β-Hydroxybutyrate Biosynthesis Using the Spent Mushroom Substrate by Bacillus tequilensis PSR-2. Waste Biomass Valor 12, 6709–6725 (2021). https://doi.org/10.1007/s12649-021-01460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01460-8

Keywords

Navigation