Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Flavonoids Extracted from Asteriscus graveolens Improve Glucose Metabolism and Lipid Profile in Diabetic Rats

Author(s): Fadwa El-ouady, Fatima Bachir and Mohamed Eddouks*

Volume 21, Issue 5, 2021

Published on: 18 August, 2020

Page: [895 - 904] Pages: 10

DOI: 10.2174/1871530320999200818103709

Price: $65

Abstract

Aims: This study aimed to evaluate the antidiabetic and antihyperlipidemic effects of Asteriscus graveolens.

Background: Asteriscus graveolens (Asteraceae) is a medicinal plant widely used by the Moroccan population to treat various diseases, including diabetes.

Objective: This work aimed to assess the capacity of flavonoids extracted from Asteriscus graveolens (FEE) to improve diabetes mellitus and dyslipidemia in normal and STZ-induced diabetic rats.

Methods: Flavonoids were extracted from A. graveolens using the Soxhlet apparatus and using different organic solvents. Normal and streptozotocin-induced diabetic rats were treated orally by the extract of A. graveolens at a dose of 10 mg/kg. The oral treatment during 15 days was used to evaluate the effect of the flavonoids extracted from A. graveolens on blood glucose level and lipid profile in normal and diabetic rats. The oral glucose tolerance test, as well as the analysis of the histopathological examination of the liver, was performed. The antioxidant activity of FEE was also assessed by the method of trapping of free radical 2,2-diphenyl-1 picrylhydrazyl (DPPH), in order to estimate the mechanisms of action involved by FEE to improve hyperglycemia and lipid profile in normal and diabetic rats.

Results: FEE reduced serum glucose concentrations in both normal and diabetic rats and exhibited lowering total cholesterol and triglycerides effects as well as improvement of the HDL-cholesterol serum level in the last group. In addition, a remarkable influence on glucose tolerance was also noticed after FEE treatment. Moreover, FEE was able to improve the histopathological status of the liver and was found to possess a potent antioxidant effect in vitro.

Conclusion: In conclusion, this study demonstrates the hypoglycemic and antihyperlipidemic effects of FEE in rats and supports its traditional use for the management of diabetes.

Keywords: Antidiabetic, antihyperlipidemic, Asteriscus graveolens, histopathology, antioxidant activity, medicinal plant, streptozotocin.

Graphical Abstract
[1]
Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[2]
Burak, M.; Imen, Y. Flavonoids and their antioxidant properties. Turk. Klin. Tip Bilim. Derg., 1999, 19, 296-304.
[3]
Ovando, C.; Hernandez, D.; Hernandez, E. Chemical studies of anthocyanins: a review. Food Chem., 2009, 113(4), 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[4]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of β-amyloid generation and memory deficiency. Brain Res., 2009, 1250, 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[5]
Metodiewa, D.; Kochman, A.; Karolczak, S. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (rutin) action. Biochem. Mol. Biol. Int., 1997, 41(5), 1067-1075.
[http://dx.doi.org/10.1080/15216549700202141] [PMID: 9137839]
[6]
Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod., 1988, 51(2), 345-348.
[http://dx.doi.org/10.1021/np50056a030] [PMID: 3379415]
[7]
Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919.
[http://dx.doi.org/10.1016/S1097-2765(05)00089-4] [PMID: 11090628]
[8]
Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J. Diabetes Metab. Disord., 2013, 12(1), 43.
[http://dx.doi.org/10.1186/2251-6581-12-43] [PMID: 23938049]
[9]
Johnston, K.; Sharp, P.; Clifford, M.; Morgan, L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett., 2005, 579(7), 1653-1657.
[http://dx.doi.org/10.1016/j.febslet.2004.12.099] [PMID: 15757656]
[10]
Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr., 2004, 134(10), 2499-2503.
[http://dx.doi.org/10.1093/jn/134.10.2499] [PMID: 15465737]
[11]
Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P.G.; Pannakal, S.T.; Priyadarsini, K.I.; Unnikrishnan, M.K. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp. Toxicol. Pathol., 2012, 64(6), 651-658.
[http://dx.doi.org/10.1016/j.etp.2010.12.009] [PMID: 21208790]
[12]
Ajebli, M.; Eddouks, M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[13]
Hebi, M.; Hajji, L.; Eddouks, M. Effect of flavonoid-rich extract of Tamarix articulata Vahl. on glucose and lipid metabolism in normal and diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16(2), 94-105.
[http://dx.doi.org/10.2174/1871525717666181211143858] [PMID: 30539702]
[14]
International Union of Conservation of Nature IUCN. A guide to medicinal plants in North Africa., 1st Ed.; IUCN Centre for Mediterranean Cooperation: Spain, 2005.
[15]
Aouissi, H.; Gourine, N.; Wang, H.; Chen, X.; Bombarda, I.; Boudjeniba, M.; Yousf, M. Chemical composition, antioxidative, antimicrobial and anti cancer activities of Asteriscus graveolens (Forssk) essential oil. Orient. Pharm. Exp. Med., 2018, 18, 217-223.
[http://dx.doi.org/10.1007/s13596-018-0315-0]
[16]
Edziri, H.; Ammar, S.; Souad, L.; Mahjoub, M.A.; Mastouri, M.; Aouni, M.; Mighri, Z.; Verschaeve, L. In vitro evaluation of antimicrobial and antioxidant activities of some Tunisian vegetables. S. Afr. J. Bot., 2012, 78, 252-256.
[http://dx.doi.org/10.1016/j.sajb.2011.09.012]
[17]
Chaib, F.; Allali, H.; Bennaceur, M.; Flamini, G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: two Asteraceae herbs growing wild in the hoggar. Chem. Biodivers., 2017, 14(8)
[http://dx.doi.org/10.1002/cbdv.201700092] [PMID: 28467692]
[18]
Znini, M.; Cristofari, G.; Majidi, L.; Mazouz, H.; Tomi, P.; Paolini, J.; Costa, J. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat. Prod. Commun., 2011, 6(11), 1763-1768.
[http://dx.doi.org/10.1177/1934578X1100601147] [PMID: 22224306]
[19]
Askarne, L.; Talibi, I.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Ait Ben Aoumar, A. In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot., 2012, 40, 53-58.
[http://dx.doi.org/10.1016/j.cropro.2012.04.023]
[20]
Tayeh, Z.; Dudai, N.; Schechter, A.; Chalifa-Caspi, V.; Barak, S.; Ofir, R. Molecular mode of action of Asteriscus graveolens as an anticancer agent. Int. J. Mol. Sci., 2018, 19(8), 2162.
[http://dx.doi.org/10.3390/ijms19082162] [PMID: 30042356]
[21]
Evans, W.C. Trease and Evans Pharmacognosy, 14th ed.; Harcourt Brace and company, Asia Pvt. Ltd: Singapore, 1997, pp. 12-68.
[22]
El-ouady, F.; Eddouks, M. Glucose lowering activity of aqueous Ammodaucus leucotrichus extract in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2020, 20(2), 152-159.
[http://dx.doi.org/10.2174/1871529X19666190222182312] [PMID: 30806327]
[23]
El-ouady, F.; Eddouks, M. Effect of Terebinthus atlanticus on glucose metabolism in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2019, 20(1), 31-40.
[http://dx.doi.org/10.2174/1871529X19666190902124018] [PMID: 31475903]
[24]
El-ouady, F.; Lahrach, N.; Ajebli, M.; El Haidani, A.; Eddouks, M. Antihyperglycemic effect of the aqueous extract of Foeniculum vulgare in normal and streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2019, 20(1), 54-63.
[http://dx.doi.org/10.2174/1871525717666190612121516] [PMID: 31195951]
[25]
Farid, O.; Zeggwagh, N.; El-ouady, F.; Eddouks, M. Mentha pulegium aqueous extract exhibits antidiabetic and hepatoprotective effects in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 292-301.
[http://dx.doi.org/10.2174/1871530318666181005102247] [PMID: 30289084]
[26]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[27]
Ajebli, M.; El-ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. &. Coss. Endocr. Metab. Immune Disord. Drug Targets, 2018, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[28]
Wall, J. Antioxidants in prevention of reperfusion damage vascular endothelium. Trinity Student Med. J., 2000, 1, 67-71.
[29]
Amic, D.; Davidovic-Amic, D.; Beslo, D.; Trinajstic, N. Structure-radical scavenging activity relationships of flavonoids. Croat. Chem. Acta, 2003, 76(1), 55-61.
[30]
Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res., 2005, 579(1-2), 200-213.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023] [PMID: 16126236]
[31]
El-ouady, F.; Eddouks, M. Aqueous Asteriscus graveolens extract exhibits antidiabetic and hepatoprotective effects in diabetic rats. Nat. Prod. J., 2019, 10(4), 459-466.
[http://dx.doi.org/10.2174/2210315509666190624100236]
[32]
Kasetti, R.B.; Rajasekhar, M.D.; Kondeti, V.K.; Fatima, S.S.; Kumar, E.G.; Swapna, S.; Ramesh, B.; Rao, C.A. Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem. Toxicol., 2010, 48(4), 1078-1084.
[http://dx.doi.org/10.1016/j.fct.2010.01.029] [PMID: 20122979]
[33]
Das, A.V.; Padayatti, P.S.; Paulose, C.S. Effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb. on histological and ultrastructural changes in tissues of streptozotocin induced diabetic rats. Indian J. Exp. Biol., 1996, 34(4), 341-345.
[PMID: 8698423]
[34]
Yuan, M.; Konstantopoulos, N.; Lee, J.; Hansen, L.; Li, Z.W.; Karin, M.; Shoelson, S.E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 2001, 293(5535), 1673-1677.
[http://dx.doi.org/10.1126/science.1061620] [PMID: 11533494]
[35]
Rouhi-Boroujeni, H.; Rouhi-Boroujeni, H.; Heidarian, E.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Herbs with anti-lipid effects and their interactions with statins as a chemical anti- hyperlipidemia group drugs: a systematic review. ARYA Atheroscler., 2015, 11(4), 244-251.
[PMID: 26478732]
[36]
Rafieian-Kopaei, M.; Shahinfard, N. Rouhi- Boroujeni H., Gharipour M., Darvishzadeh- Boroujeni P. Effects of Ferulago angulate extract on serum lipids and lipid peroxidation. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/680856]
[37]
Imran, A.; Butt, M.S.; Arshad, M.S.; Arshad, M.U.; Saeed, F.; Sohaib, M.; Munir, R. Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. Lipids Health Dis., 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12944-018-0688-6] [PMID: 29592809]
[38]
Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010, 15(5), 3135-3170.
[http://dx.doi.org/10.3390/molecules15053135] [PMID: 20657468]
[39]
Gökkusu, C.; Palanduz, S.; Ademoğlu, E.; Tamer, S. Oxidant and antioxidant systems in niddm patients: influence of vitamin E supplementation. Endocr. Res., 2001, 27(3), 377-386.
[http://dx.doi.org/10.1081/ERC-100106015] [PMID: 11678585]
[40]
Erdogan, O.I.; Aslan, E.S.; Sezer, S.F.; Murat, K.; Bilge, S. Exploration of cholinesterase and tyrosinase inhibitory, antiprotozoal and antioxidant effects of Buxus sempervirens L. (boxwood). Ind. Crops Prod., 2012, 40, 116-121.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.004]
[41]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. Improves lipid profile in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(3), 239-246.
[http://dx.doi.org/10.2174/1871529X18666180419100823] [PMID: 29669507]
[42]
Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr. Metab. (Lond.), 2015, 12, 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[43]
Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J. Med. Food, 2005, 8(3), 281-290.
[http://dx.doi.org/10.1089/jmf.2005.8.281] [PMID: 16176136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy