Skip to main content
Log in

Solving Linear Systems of Equations by Using the Concept of Grover’s Search Algorithm: an IBM Quantum Experience

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum algorithm, as compared to classical algorithm, plays a notable role in solving linear systems of equations with an exponential speedup. Here, we demonstrate a method for solving a particular system of equations by using the concept of well-known Grover’s quantum search algorithm. The algorithm finds the solution by rotating the initial state vector in the Hilbert space to get the target solution state. It mainly involves finding particular matrices that solve the set of equations and constructing corresponding quantum circuits using the basic quantum gates. We explicitly illustrate the whole process by taking 48 different set of equations and solving them by using the concept of Grover’s algorithm. We propose new quantum circuits for each set of equations and design those on the IBM quantum simulator. We run the quantum circuit for one set of equations and obtain the desired results, and hence verify the working of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zidan, M: A novel quantum computing model based on entanglement degree. Modern Phys. Lett. B, 2050401 (2020)

  2. Abdel-Aty, A.-H., Kadry, H, Zidan, M, Al-Sbou, Y, Zanaty, E A, Abdel-Aty, M: A quantum classification algorithm for classification incomplete patterns based on entanglement measure. J. Intell. Fuzzy. Syst., 1–8 (2020)

  3. Zidan, M, Abdel-Aty, A -H, Nguyen, D M, Mohamed, A S A, Al-Sbou, Y, Eleuch, H, Abdel-Aty, M: A quantum algorithm based on entanglement measure for classifying Boolean multivariate function into novel hidden classes. Results in Physics 15, 102549 (2019)

    Article  Google Scholar 

  4. Zidan, M, Abdel-Aty, A.-H., El-shafei, M, Feraig, M, Al-Sbou, Y, Eleuch, H, Abdel-Aty, M: Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl. Sci. 9, 1277 (2019)

    Article  Google Scholar 

  5. Zidan, M, Eleuch, H, Abdel-Aty, M.: Non-classical computing problems: toward novel type of quantum computing problems. Results Phys. 21, 103536 (2020)

    Article  Google Scholar 

  6. Abrams, D. S., Lloyd, S.: Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997)

    Article  ADS  Google Scholar 

  7. Zhang, J. F., Wei, T. C., Laflamme, R.: Experimental quantum simulation of entanglement in many-body systems. Phys. Rev. Lett. 107, 010501 (2011)

    Article  ADS  Google Scholar 

  8. Quantum Computation, Quantum Information, Aspuru-Guzik, A., Dutoi, A. D., Love, P. J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309, 5741 (2005)

    Google Scholar 

  9. Lanyon, B. P., et al.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106 (2010)

    Article  Google Scholar 

  10. Harrow, A. W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Rundle, R. P., Mills, P. W., Tilma, T., Samson, J. H., Everitt, M. J.: Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A 96, 02217 (2017)

    Google Scholar 

  12. Grimaldi, D., Marinov, M.: Distributed measurement systems. Measurement 30, 279–287 (2001)

    Article  ADS  Google Scholar 

  13. Gangopadhyay, S., Manabputra, B.B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement based Deutsch-Jozsa like algorithm using a 5-Qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. 1707.07460 (2017)

  15. Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an ibm quantum experience. Quantum Measure. Quantum Metro. 4, 1–7 (2017)

    Article  ADS  Google Scholar 

  16. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  Google Scholar 

  17. Vishnu, P. K., Joy, D., Behera, B. K., Panigrahi, P. K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yalçinkaya, İ, Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  19. Dash, A., Rout, S., Behera, B. K., Panigrahi, P. K.: Quantum locker using a novel verification algorithm and its experimental realization in IBM quantum computer. arXiv:1710.05196 (2017)

  20. Roy, S., Behera, B. K., Panigrahi, P. K.: Demonstration of entropic noncontextual inequality using IBM quantum computer. arXiv:1710.10717 (2017)

  21. Satyajit, S., Srinivasan, K., Behera, B. K., Panigrahi, P. K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms. An IBM Quantum Experience. Quantum Meas. Quantum Metrol. 4, 1–7 (2017)

    Article  ADS  Google Scholar 

  23. Wootton, J. R. : Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)

    Article  ADS  Google Scholar 

  24. Berta, M., Wehner, S., Wilde, M. M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)

    Article  ADS  Google Scholar 

  25. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017)

    Article  Google Scholar 

  26. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  27. Alsina, D., Latorre, J. I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  28. García-Martín, D., Sierra, G.: Five Experimental Tests on the 5-Qubit IBM Quantum Computer. J. App. Math. Phys. 6, 1460 (2018)

    Article  Google Scholar 

  29. Kalra, A. R., Gupta, N., Behera, B. K., Prakash, S., Panigrahi, P. K.: Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework. Quantum Inf. Process. 18, 170 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv:1712.04925 (2017)

  31. Moulick, S. R., Panigrahi, P. K.: Quantum cheques. Quantum Inf. Process. 15, 2475–2486 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Behera, B. K., Banerjee, A., Panigrahi, P. K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-Q and beyond. Quantum Sci. Technol. 3, 035001 (2018)

    Article  ADS  Google Scholar 

  34. Yalçinkaya, İ., Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  35. Wootton, J. R., Loss, D. A.: repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)

    Article  ADS  Google Scholar 

  36. Ghosh, D., Agarwal, P., Pandey, P., Behera, B. K., Panigrahi, P. K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., Gambetta, J. M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  ADS  Google Scholar 

  38. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793 (2018)

    Article  ADS  Google Scholar 

  39. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 119, 60002 (2017)

    Article  ADS  Google Scholar 

  40. Dutta, S., Suau, A., Dutta, S., Roy, S., Behera, B. K., Panigrahi, P. K.: Demonstration of a quantum circuit design methodology for multiple regression. arXiv:1811.01726 (2018)

  41. Behera, B. K., Seth, S., Das, A., Panigrahi, P. K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  Google Scholar 

  42. Hegade, N. N., Behera, B. K., Panigrahi, P. K.: Experimental demonstration of quantum tunneling in IBM quantum computer. arXiv:1712.07326(2017)

  43. Malik, G. R., Singh, R. P., Behera, B. K., Panigrahi, P. K.: First experimental demonstration of multi-particle quantum tunneling in IBM quantum computer. https://doi.org/10.13140/RG.2.2.27260.18569 (2019)

  44. Mahanti, S, Das, S, Behera, BK, Panigrahi, PK: Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf. Process. 18(7), 1–10 (2019). Springer

    Article  Google Scholar 

  45. Grover, L. K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B.K.B. is financially supported by IISER-K Institute fellowship. R.M. acknowledges all her teachers for their continuous support and guidance and her family for their love and moral support. This work was done when R.M. was a student at Central University of Karnataka and visited IISER-K. R.M. acknowledges the hospitality provided by IISER Kolkata during the project work. We are extremely grateful to IBM team and IBM Quantum Experience project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, R., Behera, B.K. & Panigrahi, P.K. Solving Linear Systems of Equations by Using the Concept of Grover’s Search Algorithm: an IBM Quantum Experience. Int J Theor Phys 60, 1980–1988 (2021). https://doi.org/10.1007/s10773-021-04817-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04817-w

Keywords

Navigation