Skip to main content
Log in

Configurable memory designs in quantum-dot cellular automata

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) has the capability to scale down beyond the range of CMOS. Besides wide acceptance of QCA, it suffers from different challenges, regular structure and configurability is one of them. The disparate design in QCA increases design complexity as well as cost. The disparity of design needs different clocking layout for the correct propagation of signals. Moreover, the interconnection of these non-symmetric designs also increases the routing difficulty in a specific, realistic clocking scheme. In this paper, configurable memory structures are investigated in QCA. First of all, a configurable level triggered flip flop (ConFF) is realized. The same ConFF is utilized to design configurable dual edge triggered flip-flop (EConFF) with some minor modification. Nine different logic functions can be produced using the same EConFF circuit which is not found in any existing QCA circuit.The proposed configurable structures are verified with QCADesigner 2.0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abutaleb M (2017) Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron J 61:6–14

    Article  Google Scholar 

  2. Abutaleb M (2018) A novel configurable flip flop design using inherent capabilities of quantum-dot cellular automata. Microprocess Microsyst 56(C):101–112. https://doi.org/10.1016/j.micpro.2017.11.003

    Article  Google Scholar 

  3. Ahmadpour SS, Mosleh M, Heikalabad SR (2020) An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electr Eng 82:106548. https://doi.org/10.1016/j.compeleceng.2020.106548

    Article  Google Scholar 

  4. Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39(7):512–520. https://doi.org/10.1016/j.micpro.2015.07.011

    Article  Google Scholar 

  5. Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39(7):512–520

    Article  Google Scholar 

  6. Angizi S, Sayedsalehi S, Roohi A, Bagherzadeh N, Navi K (2015) Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops. J Circuits Syst Comput 24(10):1550153. https://doi.org/10.1142/S0218126615501534

    Article  Google Scholar 

  7. Bhavani KS, Alinvinisha V (2015) Utilization of QCA based T flip flop to design counters. In: Innovations in information, embedded and communication systems (ICIIECS), 2015 international conference on, pp 1–6. https://doi.org/10.1109/ICIIECS.2015.7193059

  8. Bobda C (2007) Introduction to reconfigurable computing. Springer

    Book  Google Scholar 

  9. Bondalapati K, Prasanna VK (2002) Reconfigurable computing systems. Proc IEEE 90(7):1201–1217. https://doi.org/10.1109/JPROC.2002.801446

    Article  Google Scholar 

  10. Campos CAT, Marciano AL, Neto OPV, Torres FS (2016) Use: a universal, scalable, and efficient clocking scheme for QCA. IEEE Trans Comput Aided Des Integr Circuits Syst 35(3):513–517. https://doi.org/10.1109/TCAD.2015.2471996

    Article  Google Scholar 

  11. Devadoss R, Paul K, Balakrishnan M (2011) p-QCA: a tiled programmable fabric architecture using molecular quantum-dot cellular automata. ACM J Emerg Technol Comput Syst JETC. https://doi.org/10.1145/2000502.2000506

    Article  Google Scholar 

  12. Goswami M, Mondal A, Mahalat MH, Sen B, Sikdar BK (2019) An efficient clocking scheme for quantum-dot cellular automata. Int J Electron Lett. https://doi.org/10.1080/21681724.2019.1570551

    Article  Google Scholar 

  13. Goswami M, Roychoudhury M, Sarkar J, Sen B, Sikdar BK (2020) An efficient inverter logic in quantum-dot cellular automata for emerging nanocircuits. Arab J Sci Eng 45:2663–2674. https://doi.org/10.1007/s13369-019-04103-2

    Article  Google Scholar 

  14. Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940. https://doi.org/10.1016/j.mejo.2012.10.007

    Article  Google Scholar 

  15. Kalogeiton VS, Papadopoulos DP, Liolis O, Mardiris VA, Sirakoulis GC, Karafyllidis IG (2017) Programmable crossbar quantum-dot cellular automata circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 36(8):1367–1380. https://doi.org/10.1109/TCAD.2016.2618869

    Article  Google Scholar 

  16. Kamali SF, Tabrizchi S, Mohammadyan S, Rastgoo M, Navi K (2020) Designing positive, negative and standard gates for ternary logics using quantum dot cellular automata. Comput Electr Eng 83:106590. https://doi.org/10.1016/j.compeleceng.2020.106590

    Article  Google Scholar 

  17. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557. https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  18. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49

    Article  Google Scholar 

  19. Lim LA, Ghazali A, Yan SCT, Fat CC (2012) Sequential circuit design using quantum-dot cellular automata (QCA). In: Circuits and systems (ICCAS), 2012 IEEE international conference on, pp 162–167

  20. Liu W, Lu L, O’Neill M, Swartzlander EE (2014) A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol 13(3):476–487. https://doi.org/10.1109/TNANO.2014.2306754

    Article  Google Scholar 

  21. Monfared JR, Mousavi A (2020) Design and simulation of nano-arbiters using quantum-dot cellular automata. Microprocess Microsyst 72:102926. https://doi.org/10.1016/j.micpro.2019.102926

    Article  Google Scholar 

  22. Sabbaghi-Nadooshan R, Kianpour M (2014) A novel QCA implementation of mux-based universal shift register. J Comput Electron 13(1):198–210. https://doi.org/10.1007/s10825-013-0500-9

    Article  MATH  Google Scholar 

  23. Safoev N, Jeon JC (2020) A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron Eng 222:111197. https://doi.org/10.1016/j.mee.2019.111197

    Article  Google Scholar 

  24. Sasamal TN, Singh AK, Ghanekar U (2018) Design and implementation of QCA D-flip-flops and RAM cell using majority gates. J Circuits Syst Comput 28(5):1950079. https://doi.org/10.1142/S0218126619500798

    Article  Google Scholar 

  25. Shamsabadi AS, Ghahfarokhi BS, Zamanifar K, Movahedinia N (2009) Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J Syst Archit 55(3):180–187. https://doi.org/10.1016/j.sysarc.2008.11.001 (Challenges in self-adaptive computing (Selected papers from the Aether-Morpheus 2007 workshop)

    Article  Google Scholar 

  26. Sheikhfaal S, Navi K, Angizi S, Navin AH (2015) Designing high speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter 4(2):190–197

    Article  Google Scholar 

  27. Torabi M (2011) A new architecture for T flip flop using quantum-dot cellular automata. In: Quality electronic design (ASQED), 2011 3rd Asia symposium on, pp 296–300. https://doi.org/10.1109/ASQED.2011.6111764

  28. Tougaw D, Johnson EW, Egley D (2012) Programmable logic implemented using quantum-dot cellular automata. IEEE Trans Nanotechnol 11(4):739–745. https://doi.org/10.1109/TNANO.2012.2194721

    Article  Google Scholar 

  29. Trindade A, Ferreira R, Nacif JAM, Sales D, Neto OPV (2016) A placement and routing algorithm for quantum-dot cellular automata. In: 2016 29th Symposium on integrated circuits and systems design (SBCCI), pp 1–6

  30. Vankamamidi V, Ottavi M, Lombardi F (2008) A serial memory by quantum-dot cellular automata (QCA). IEEE Trans Comput 57(5):606–618. https://doi.org/10.1109/TC.2007.70831

    Article  MathSciNet  MATH  Google Scholar 

  31. Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):34–44

    Article  Google Scholar 

  32. Venkataramani P, Srivastava S, Bhanja S (2008) Sequential circuit design in quantum-dot cellular automata. In: 2008 8th IEEE conference on nanotechnology, pp 534–537. https://doi.org/10.1109/NANO.2008.159

  33. Vetteth A, Walus K, Dimitrov V, Jullien G (2003) Quantum-dot cellular automata of flip-flops. In: ATIPS Laboratory 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada

  34. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  35. Welland M, Gimzewski J (2012) Ultimate limits of fabrication and measurement, vol 292. Springer Science and Business Media

    Google Scholar 

  36. Wu CB, Xie GJ, Xiang YL, Lv HJ (2014) Design and simulation of dual-edge triggered sequential circuits in quantum-dot cellular automata. J Comput Theor Nanosci 11(7):1620–1626. https://doi.org/10.1166/jctn.2014.3541

    Article  Google Scholar 

  37. Xiao LR, Chen XX, Ying SY (2012) Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J Zhejiang Univ Sci C 13(5):385–392. https://doi.org/10.1631/jzus.C1100287

    Article  Google Scholar 

  38. Xiao LR, Xu X, Ying SY (2013) Dual-edge triggered T flip-flop structure using quantum-dot cellular automata. Adv Mater Res 662:562–567. https://doi.org/10.4028/www.scientific.net/AMR.662.562

    Article  Google Scholar 

  39. Yang X, Cai L, Zhao X (2010) Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron Lett 46(12):825–826. https://doi.org/10.1049/el.2010.1090

    Article  Google Scholar 

  40. Yang X, Cai L, Zhao X, Zhang N (2010) Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron J 41(1):56–63. https://doi.org/10.1016/j.mejo.2009.12.008

    Article  Google Scholar 

  41. Zhang Y, Xie G, Han J (2020) A robust wire crossing design for thermostability and fault tolerance in quantum-dot cellular automata. Microprocess Microsyst 74:103033. https://doi.org/10.1016/j.micpro.2020.103033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Goswami.

Additional information

This submitted manuscript is an extended version of “A Realistic Configurable Level Triggered Flip-Flop in Quantum-Dot Cellular Automata” which is published at VDAT 2019, CCIS 1066, pp. 455-467, 2019, DOI: https://doi.org/10.1007/978-981-32-9767-8_38. To the best of my knowledge, 60% new work has been included with the existing version of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, M., Tanwar, R., Rawat, P. et al. Configurable memory designs in quantum-dot cellular automata. Int. j. inf. tecnol. 13, 1381–1393 (2021). https://doi.org/10.1007/s41870-021-00687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-021-00687-x

Keywords

Navigation