Skip to main content

Advertisement

Log in

A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The adaptive neuro-fuzzy inference system (ANFIS) is employed in a vast range of applications because of its smoothness (by Fuzzy Control (FC)) and adaptability (by Neural Network (NN)). Although ANFIS is better in nonlinear optimization, two major loopholes need to be addressed thoroughly. They are the curse of dimensionality and computational complexity. To overcome these complications, a novel usage of the ANFIS model is proposed as Cascaded ANFIS in this paper. As the primary source of this algorithm, a general two-input one-output ANFIS algorithm is used. The novel algorithm has two main modules called pair selection and training model. Pair selection is responsible for selecting the best match for the inputs, while the training module generates the output. The cascaded behavior of the novel algorithm generates additional iterations to advance the best solution. Even though the number of parameters that need to be adjusted is increasing at each additional iteration, the complexity of the algorithm may stay stable. Two-hybrid state-of-the-art algorithms are used to compare the performance of the novel algorithm, namely, Particle Swarm Optimization-based ANFIS (ANFIS-PSO) and Genetic Algorithm-based ANFIS (ANFIS-GA). Furthermore, individual performance is presented for seven publicly recognized datasets. The results have demonstrated that, for some datasets, the root means square error (RMSE) can be minimum as 0.0001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Karatekin, T., Sancak, S., Celik, G., Topcuoglu, S., Karatekin, G., Kirci, P., Okatan, A.: Interpretable machine learning in healthcare through generalized additive model with pairwise interactions (ga2m): Predicting severe retinopathy of prematurity. In: 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), pp. 61–66. IEEE (2019)

  2. Tan, Y., Zhang, G.J.: The application of machine learning algorithm in underwriting process. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3523–3527. IEEE (2005)

  3. Pahwa, K., Agarwal, N.: Stock market analysis using supervised machine learning. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 197–200. IEEE (2019)

  4. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74. Wiley, New York (2009)

    Book  Google Scholar 

  5. Yang, X.S., Chien, S.F., Ting, T.O.: Computational intelligence and metaheuristic algorithms with applications (2014)

  6. Vapnik, V.: The nature of statistical learning theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Gandomi, A.H., Talatahari, S., Yang, X.S., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Des. Tall Special Build. 22(17), 1330–1349 (2013)

    Article  Google Scholar 

  8. Wang, B., Xue, J., Chen, D.: Takagi–Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality. J. Vibrat. Control 22(10), 2356–2369 (2016)

    Article  MathSciNet  Google Scholar 

  9. Nguyen, S.D., Nguyen, Q.H., Choi, S.B.: Hybrid clustering based fuzzy structure for vibration control-part 1: a novel algorithm for building neuro-fuzzy system. Mech. Syst. Signal Process. 50, 510–525 (2015)

    Article  Google Scholar 

  10. Bandara, R.N., Gaspe, S.: Fuzzy logic controller design for an unmanned aerial vehicle. In: 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), pp. 1–5. IEEE (2016)

  11. Ratnayake, R., De Silva, T., Rodrigo, C.: A comparison of fuzzy logic controller and pid controller for differential drive wall-following mobile robot. In: 2019 14th Conference on Industrial and Information Systems (ICIIS), pp. 523–528. IEEE (2019)

  12. Panella, M., Gallo, A.S.: An input–output clustering approach to the synthesis of anfis networks. IEEE Trans. Fuzzy Syst. 13(1), 69–81 (2005)

    Article  Google Scholar 

  13. Nguyen, S.D., Lam, B.D., Nguyen, Q.H., Choi, S.B.: A fuzzy-based dynamic inversion controller with application to vibration control of vehicle suspension system subjected to uncertainties. Proc. Inst. Mech. Eng. I 232(9), 1103–1119 (2018)

    Google Scholar 

  14. Nguyen, S.D., Nguyen, Q.H., Seo, T.I.: Anfis deriving from jointed input-output data space and applying in smart-damper identification. Appl. Soft Comput. 53, 45–60 (2017)

    Article  Google Scholar 

  15. Khodadadi, H., Ghadiri, H.: Fuzzy logic self-tuning pid controller design for ball mill grinding circuits using an improved disturbance observer. Mining Metall. Explor. 36(6), 1075–1090 (2019)

    Google Scholar 

  16. Li, H., Guo, C., Yang, S.X., Jin, H.: Hybrid model of wt and anfis and its application on time series prediction of ship roll motion. In: The Proceedings of the Multiconference on“ Computational Engineering in Systems Applications”, vol. 1, pp. 333–337. IEEE (2006)

  17. Chen, D.W., Zhang, J.P.: Time series prediction based on ensemble anfis. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3552–3556. IEEE (2005)

  18. Muhammad, A., Nazaruddin, Y.Y., Siregar, P.I.: Design of nonlinear adaptive-predictive control system with anfis modeling for urea plant reactor unit. In: 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pp. 147–152. IEEE (2019)

  19. Davanipour, M., Zekri, M., Sheikholeslam, F.: The preference of fuzzy wavelet neural network to anfis in identification of nonlinear dynamic plants with fast local variation. In: 2010 18th Iranian Conference on Electrical Engineering, pp. 605–609. IEEE (2010)

  20. de Martins, J., de Araújo, F.: Nonlinear system identification based on modified anfis. In: Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, pp. 21–23 (2015)

  21. Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  22. Kar, S., Das, S., Ghosh, P.K.: Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  23. Barati-Harooni, A., Najafi-Marghmaleki, A., Mohammadi, A.H.: Anfis modeling of ionic liquids densities. J. Mol. Liq. 224, 965–975 (2016)

    Article  Google Scholar 

  24. Tatar, A., Barati-Harooni, A., Najafi-Marghmaleki, A., Norouzi-Farimani, B., Mohammadi, A.H.: Predictive model based on anfis for estimation of thermal conductivity of carbon dioxide. J. Mol. Liq. 224, 1266–1274 (2016)

    Article  Google Scholar 

  25. Taylan, O., Karagözoğlu, B.: An adaptive neuro-fuzzy model for prediction of student’s academic performance. Comput. Ind. Eng. 57(3), 732–741 (2009)

    Article  Google Scholar 

  26. Peymanfar, A., Khoei, A., Hadidi, K.: A new anfis based learning algorithm for cmos neuro-fuzzy controllers. In: 2007 14th IEEE International Conference on Electronics, Circuits and Systems, pp. 890–893. IEEE (2007)

  27. Dziwiński, P., Bartczuk, Ł.: A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. IEEE Trans. Fuzzy Sys. 28, 6 (2019)

    Google Scholar 

  28. Liu, T., Zhang, W., McLean, P., Ueland, M., Forbes, S.L., Su, S.W.: Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines. Int. J. Fuzzy Syst. 20(4), 1309–1320 (2018)

    Article  Google Scholar 

  29. Kalia, H., Dehuri, S., Ghosh, A., Cho, S.B.: Surrogate-assisted multi-objective genetic algorithms for fuzzy rule-based classification. Int. J. Fuzzy Syst. 20(6), 1938–1955 (2018)

    Article  Google Scholar 

  30. Zhang, C.: Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm. Int. J. Fuzzy Syst. 22, 1694 (2020)

    Article  Google Scholar 

  31. Le, T.L., Huynh, T.T., Lin, C.M.: Self-evolving interval type-2 wavelet cerebellar model articulation control design for uncertain nonlinear systems using pso. Int. J. Fuzzy Syst. 21(8), 2524–2541 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zarandi, M.F., Dorry, F.: A hybrid fuzzy pso algorithm for solving steelmaking-continuous casting scheduling problem. Int. J. Fuzzy Syst. 20(1), 219–235 (2018)

    Article  Google Scholar 

  33. Lin, C.M., Le, T.L.: Pso-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)

    Article  MathSciNet  Google Scholar 

  34. Chen, C.C.: Optimization of zero-order tsk-type fuzzy system using enhanced particle swarm optimizer with dynamic mutation and special initialization. Int. J. Fuzzy Syst. 20(5), 1685–1698 (2018)

    Article  Google Scholar 

  35. Zakeri, E., Moezi, S.A., Eghtesad, M.: Tracking control of ball on sphere system using tuned fuzzy sliding mode controller based on artificial bee colony algorithm. Int. J. Fuzzy Syst. 20(1), 295–308 (2018)

    Article  MathSciNet  Google Scholar 

  36. Sasikala, E., Rengarajan, N.: An intelligent technique to detect jamming attack in wireless sensor networks (wsns). Int. J. Fuzzy Syst. 17(1), 76–83 (2015)

    Article  Google Scholar 

  37. Kuo, C.H., Kuo, Y.C., Chou, H.C., Lin, Y.T.: P300-based brain-computer interface with latency estimation using abc-based interval type-2 fuzzy logic system. Int. J. Fuzzy Syst. 19(2), 529–541 (2017)

    Article  Google Scholar 

  38. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  39. Zakaria, Z., Rahman, T., Hassan, E.: Economic load dispatch via an improved bacterial foraging optimization. In: 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), pp. 380–385. IEEE (2014)

  40. Orouskhani, M., Mansouri, M., Orouskhani, Y., Teshnehlab, M.: A hybrid method of modified cat swarm optimization and gradient descent algorithm for training anfis. Int. J. Comput. Intell. Appl. 12(02), 1350007 (2013)

    Article  Google Scholar 

  41. Suchetha, N., Nikhil, A., Hrudya, P.: Comparing the wrapper feature selection evaluators on twitter sentiment classification. In: 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), pp. 1–6. IEEE (2019)

  42. Çatalkaya, M.B., Kalıpsız, O., Aktaş, M.S., Turgut, U.O.: Data feature selection methods on distributed big data processing platforms. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 133–138. IEEE (2018)

  43. Li, L.Q., Wang, X.L., Liu, Z.X., Xie, W.X.: A novel intuitionistic fuzzy clustering algorithm based on feature selection for multiple object tracking. Int. J. Fuzzy Syst. 21(5), 1613–1628 (2019)

    Article  Google Scholar 

  44. Ahn, T.C., Roh, S.B., Kim, Y.S., Wang, J.: Prototypes reduction and feature selection based on fuzzy boundary area for nearest neighbor classifiers. Int. J. Fuzzy Syst. 21(2), 639–654 (2019)

    Article  MathSciNet  Google Scholar 

  45. Han, H.G., Chen, Z.Y., Liu, H.X., Qiao, J.F.: A self-organizing interval type-2 fuzzy-neural-network for modeling nonlinear systems. Neurocomputing 290, 196–207 (2018)

    Article  Google Scholar 

  46. Deng, Y., Bao, F., Kong, Y., Ren, Z., Dai, Q.: Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2016)

    Article  Google Scholar 

  47. Salleh, M.N.M., Talpur, N., Hussain, K.: Adaptive neuro-fuzzy inference system: Overview, strengths, limitations, and solutions. In: International Conference on Data Mining and Big Data, pp. 527–535. Springer, Berlin (2017)

  48. Baghban, A.: Application of the anfis strategy to estimate vaporization enthalpies of petroleum fractions and pure hydrocarbons. Petrol. Sci. Technol. 34(15), 1359–1366 (2016)

    Article  Google Scholar 

  49. Ye, L., Ou, X.: Spatial–temporal analysis of daily air quality index in the Yangtze river delta region of china during 2014 and 2016. Chin. Geogr. Sci. 29(3), 382–393 (2019)

    Article  MathSciNet  Google Scholar 

  50. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  Google Scholar 

  51. Shamshirband, S., Hadipoor, M., Baghban, A., Mosavi, A., Bukor, J., Várkonyi-Kóczy, A.R.: Developing an anfis-pso model to predict mercury emissions in combustion flue gases. Mathematics 7(10), 965 (2019)

    Article  Google Scholar 

  52. Asuncion, A., Newman, D.: Uci machine learning repository (2007)

  53. Khan, T.A., Zain-Ul-Abideen, K., Ling, S.H.: A modified particle swarm optimization algorithm used for feature selection of uci biomedical data sets. In: 60th International Scientific Conference on Information Technology and Management Science of Riga Technical University, ITMS 2019-Proceedings (2019)

  54. Alarifi, I.M., Nguyen, H.M., Naderi Bakhtiyari, A., Asadi, A.: Feasibility of anfis-pso and anfis-ga models in predicting thermophysical properties of al2o3-mwcnt/oil hybrid nanofluid. Materials 12(21), 3628 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namal Rathnayake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnayake, N., Dang, T.L. & Hoshino, Y. A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System. Int. J. Fuzzy Syst. 23, 1955–1971 (2021). https://doi.org/10.1007/s40815-021-01076-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01076-z

Keywords

Navigation