Skip to main content
Log in

Nonlinear hygrothermal effects on the vibrations of a magnetostrictive viscoelastic laminated sandwich plate resting on an elastic medium

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In engineering applications, composite structures supported by elastic foundations are being vastly utilized in various operating environmental conditions. The nonlinear hygrothermal effect on vibration analysis of a magnetostrictive viscoelastic laminated composite sandwich plate rested on two-parameter Pasternak’s foundations is studied in the present article. The material properties of the viscoelastic plate’s layers are considered based on the Kelvin–Voigt model. The governing equation system is derived according to Hamilton’s principle. The analytical solution is obtained to study influences of the hygrothermal change, half wave number, magnitude of the feedback control gain, aspect ratios, thickness ratio, and structural viscoelastic damping coefficients on vibration damping characteristics of the plate including the frequencies, the damping rate, and the deflection. The obtained results indicate that the natural frequency and deflection reduce with increasing the structural viscoelastic damping value. The plate takes a long time for suppressing its vibration due to increasing the hygrothermal factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zenkour AM, Allam MNM, Sobhy M. Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations. Arch Appl Mech. 2011;81(1):77–96.

    Article  Google Scholar 

  2. Zenkour AM, Allam MNM, Sobhy M. Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 2010;212(3):233–52.

    Article  Google Scholar 

  3. Alimirzaei S, Sadighi M, Nikbakht A. Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory. Eur J Mech A/Solids. 2019;74:1–15.

    Article  MathSciNet  Google Scholar 

  4. Zenkour AM, Allam MNM, Sobhy M. Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations. Int J Appl Mech. 2010;2(1):87–115.

    Article  Google Scholar 

  5. Arani AG, Emdadi M, Ashrafi H, Mohammadimehr M, Nikneja S, Arani AAG, Hosseinpour A. Analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face sheets on viscoelastic foundation. J Solid Mech. 2019;11(4):690–706.

    Google Scholar 

  6. Allam MNM, Zenkour AM. Bending response of a fiber-reinforced viscoelastic arched bridge model. Appl Math Model. 2003;27:233–48.

    Article  Google Scholar 

  7. Zenkour AM. Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech. 2004;171(3–4):171–87.

    Article  Google Scholar 

  8. Sofiyev AH, Zerin Z, Kuruoglu N. Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech. 2020;231:1–17.

    Article  MathSciNet  Google Scholar 

  9. Sofiyev AH. On the solution of the dynamic stability of heterogeneous orthotropic viscoelastic cylindrical shells. Compos Struct. 2018;206:124–30.

    Article  Google Scholar 

  10. Haciyev VC, Sofiyev AH, Kuruoglu N. On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation. Mech Adv Mater Struct. 2019;26:886–97.

    Article  Google Scholar 

  11. Anjanappa M, Bi J. A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater Struct. 1994;1:83–91.

    Article  ADS  Google Scholar 

  12. Anjanappa M, Bi J. Modelling, design and control of embedded Terfenol-D actuator. Smart Struct Intel Sys. 1993;1917:908–18.

    Google Scholar 

  13. Anjanappa M, Bi J. Magnetostrictive mini actuators for smart structural application. Smart Mater Struct. 1994;3:383–90.

    Article  ADS  Google Scholar 

  14. Hiller MW, Bryant MD, Umegaki J. Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J Sound Vib. 1989;134:507–19.

    Article  ADS  Google Scholar 

  15. Reddy JN, Barbosa JI. On vibration suppression of magnetostrictive beams. Smart Mater Struct. 2000;9:49–58.

    Article  ADS  Google Scholar 

  16. Pradhan SC, Ng TY, Lam KY, Reddy JN. Control of laminated composite plates using magnetostrictive layers. Smart Mater Struct. 2001;10:657–67.

    Article  ADS  CAS  Google Scholar 

  17. Pradhan SC. Vibration suppression of FGM shells using embedded magnetostrictive layers. Int J Solids Struct. 2005;42:2465–88.

    Article  Google Scholar 

  18. Zhang Y, Zhou H, Zhou Y. Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech Solida Sin. 2015;28:50–60.

    Article  Google Scholar 

  19. Subramanian P. Vibration suppression of symmetric laminated composite beams. Smart Mater Struct. 2002;11(6):880–5.

    Article  ADS  Google Scholar 

  20. Bhattacharya B, Vidyashankar BR, Patsias S, Tomlinson GR. Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc SPIE Smart Struct Mater. 2000;4073:204–14.

    ADS  CAS  Google Scholar 

  21. Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C. Active control of beam with magnetostrictive layer. Comput Struct. 2003;81(13):1375–82.

    Article  Google Scholar 

  22. Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C. Active control of simply supported plates with a magnetostrictive layer. Smart Mater Struct. 2004;13(3):487–92.

    Article  ADS  Google Scholar 

  23. Ghosh DP, Gopalakrishnan S. Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater Struct. 2005;14(6):1462–73.

    Article  ADS  Google Scholar 

  24. Zhou HM, Zhou YH. Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater Struct. 2007;16(1):198–206.

    Article  ADS  Google Scholar 

  25. Murty AVK, Anjanappa M, Wu Y-F. The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J Sound Vib. 1997;206(2):133–49.

    Article  ADS  Google Scholar 

  26. Suman SD, Hirwani CK, Chaturvedi A, Panda SK. Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf Ser Mater Sci Eng. 2017;178:012026.

    Article  Google Scholar 

  27. Koconis DB, Kollar LP, Springer GS. Shape control of composite plates and shells with embedded actuators I: voltage specified. J Compos Mater. 1994;28:415–58.

    Article  CAS  Google Scholar 

  28. Lee SJ, Reddy JN, Rostamabadi F. Transient analysis of laminated composite plates with embedded smart-material layers. Fin Elem Anal Design. 2004;40:463–83.

    Article  Google Scholar 

  29. Zenkour AM, El-Shahrany HD. Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J Computat Appl Mech. 2019;50(1):69–75.

    Google Scholar 

  30. Zenkour AM, El-Shahrany HD. Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J Mater Res Tech. 2020;9(3):4727–48.

    Article  Google Scholar 

  31. Zenkour AM, El-Shahrany HD. Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch Appl Mech. 2020;90:1943–59.

    Article  Google Scholar 

  32. Zenkour AM, El-Shahrany HD. Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Europ J Mech/A Solids. 2021;85:104140.

    Article  ADS  MathSciNet  Google Scholar 

  33. Zenkour AM, El-Shahrany HD. Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl Math Mech. 2020;41:1269–86.

    Article  MathSciNet  Google Scholar 

  34. Hong CC. Transient responses of magnetostrictive plates without shear effects. Int J Eng Sci. 2009;47(3):355–62.

    Article  MathSciNet  CAS  Google Scholar 

  35. Hong CC. Transient responses of magnetostrictive plates by using the GDQ method. Eur J Mech A Solids. 2010;29(6):1015–21.

    Article  ADS  Google Scholar 

  36. Shankar G, Kumar SK, Mahato PK. Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Struct. 2017;116:53–68.

    Article  Google Scholar 

  37. Zenkour AM, El-Shahrany HD. Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin-Walled Struct. 2020;157:107007.

    Article  Google Scholar 

  38. Drozdov AD. Viscoelastic structures: mechanics of growth and aging. San Diego: Academic Press; 1998.

    Google Scholar 

  39. Zenkour AM. Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory. Compos Struct. 2015;122:260–70.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical statement

This research was done according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients \({\overline{Q }}_{ij}^{\left(r\right)}\) and \({\overline{q }}_{ij}\) appeared in Eqs. (9) and (10) can be presented as

$$\begin{aligned}{\overline{Q }}_{11}^{\left(r\right)} & ={Q}_{11}^{\left(r\right)}{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}+2\left({Q}_{12}^{\left(r\right)}{+2Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{22}^{\left(r\right)}{{\mathrm{sin}}^{4}\theta }^{\left(r\right)},\\ {\overline{Q }}_{23}^{\left(r\right)} & ={Q}_{23}^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+{Q}_{13}^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}, \\ {\overline{Q }}_{12}^{\left(r\right)} & =\left({Q}_{11}^{\left(r\right)}+{Q}_{22}^{\left(r\right)}-{4Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{12}^{\left(r\right)}\left({{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}\right), \\ {\overline{Q }}_{22}^{\left(r\right)} & ={Q}_{11}^{\left(r\right)}{{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+2\left({Q}_{12}^{\left(r\right)}{+2Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{22}^{\left(r\right)}{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}, \\ {\overline{Q }}_{33}^{\left(r\right)}&={Q}_{33}^{\left(r\right)},\\ {\overline{Q }}_{44}^{\left(r\right)}& ={Q}_{44}^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+{Q}_{55}^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}, \\ {\overline{Q }}_{55}^{\left(r\right)} & ={Q}_{55}^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+{Q}_{44}^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}, \\{\overline{Q }}_{66}^{\left(r\right)} & ={\left({Q}_{11}^{\left(r\right)}+{Q}_{22}^{\left(r\right)}-{2Q}_{12}^{\left(r\right)}-{2Q}_{66}^{\left(r\right)}\right){{\mathrm{sin}}^{2}\theta }^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+Q}_{66}^{\left(r\right)}\left({{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}\right),\\ {Q}_{11}^{\left(r\right)} & =\frac{{E}_{1}\left(1-{\upnu }_{23}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)}\right)}{\Delta },\quad{ Q}_{12}^{\left(r\right)}=\frac{{E}_{1}\left({\upnu }_{21}^{\left(r\right)}+{\upnu }_{31}^{\left(r\right)}{\upnu }_{23}^{\left(r\right)}\right)}{\Delta }, \quad{Q}_{13}^{\left(r\right)}=\frac{{E}_{1}\left({\upnu }_{31}^{\left(r\right)}+{\upnu }_{21}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)}\right)}{\Delta },\\ {Q}_{22}^{\left(r\right)} & =\frac{{E}_{2}\left(1-{\upnu }_{13}^{\left(r\right)}{\upnu }_{31}^{\left(r\right)}\right)}{\Delta }, \quad{Q}_{23}^{\left(r\right)}=\frac{{E}_{2}\left({\upnu }_{32}^{\left(r\right)}+{\upnu }_{12}^{\left(r\right)}{\upnu }_{31}^{\left(r\right)}\right)}{\Delta }, \quad{Q}_{33}^{\left(r\right)}=\frac{{E}_{3}\left(1-{\upnu }_{12}^{\left(r\right)}{\upnu }_{21}^{\left(r\right)}\right)}{\Delta } ,\\ {Q}_{44}^{\left(r\right)} & ={G}_{23}^{\left(r\right)}, \quad{Q}_{55}^{\left(r\right)}={G}_{13}^{\left(r\right)},\quad {Q}_{66}^{\left(r\right)}={G}_{12}^{\left(r\right)},\end{aligned}$$
$$\begin{aligned} \Delta &=1- {\upnu }_{21}^{\left(r\right)}{\upnu }_{12}^{\left(r\right)}-{\upnu }_{23}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)}-{\upnu }_{13}^{\left(r\right)}{\upnu }_{31}^{\left(r\right)} -2{\upnu }_{21}^{\left(r\right)}{\upnu }_{13}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)},\\ {\upnu }_{21}^{\left(r\right)} & =\frac{{\upnu }_{12}^{\left(r\right)}{E}_{22}^{\left(r\right)}}{{E}_{1}^{\left(r\right)}},\quad {\upnu }_{31}^{\left(r\right)}={\upnu }_{13}^{\left(r\right)}\frac{{E}_{3}^{\left(r\right)}}{{E}_{1}^{\left(r\right)}},\quad {\upnu }_{32}^{\left(r\right)}={\upnu }_{23}^{\left(r\right)}\frac{{E}_{3}^{\left(r\right)}}{{E}_{2}^{\left(r\right)}},\\ {\stackrel{\sim }{\alpha }}_{xx} & ={\alpha }_{xx}{\mathrm{cos}}^{2}\theta +{\alpha }_{yy}{\mathrm{sin}}^{2}\theta,\quad {\stackrel{\sim }{\alpha }}_{yy}={\alpha }_{yy}{\mathrm{cos}}^{2}\theta +{\alpha }_{xx}{\mathrm{sin}}^{2}\theta ,\\ {\stackrel{\sim }{\alpha }}_{xy}& =\left({\alpha }_{xx}-{\alpha }_{yy}\right)\mathrm{sin}\theta \mathrm{cos}\theta ,\\ {\stackrel{\sim }{\beta }}_{xx} & ={\beta }_{xx}{\mathrm{cos}}^{2}\theta +{\beta }_{yy}{\mathrm{sin}}^{2}\theta,\quad {\stackrel{\sim }{\beta }}_{yy}={\beta }_{yy}{\mathrm{cos}}^{2}\theta +{\beta }_{xx}{\mathrm{sin}}^{2}\theta ,\\ {\stackrel{\sim }{\beta }}_{xy} & =\left({\beta }_{xx}-{\beta }_{yy}\right)\mathrm{sin}\theta \mathrm{cos}\theta ,\\ {\overline{q }}_{31} & ={q}_{31}{\mathrm{cos}}^{2}\theta +{q}_{32}{\mathrm{sin}}^{2}\theta,\quad {\overline{q }}_{32}={q}_{32}{\mathrm{cos}}^{2}\theta +{q}_{31}{\mathrm{sin}}^{2}\theta ,\\ {\overline{q }}_{14} & =\left({q}_{15}-{q}_{24}\right)\mathrm{sin}\theta \mathrm{cos}\theta,\quad {\overline{q }}_{24}={q}_{24}{\mathrm{cos}}^{2}\theta +{q}_{15}{\mathrm{sin}}^{2}\theta ,\\ {\overline{q }}_{15} & ={q}_{15}{\mathrm{cos}}^{2}\theta +{q}_{24}{\mathrm{sin}}^{2}\theta,\quad {\overline{q }}_{25}=\left({q}_{15}-{q}_{24}\right)\mathrm{sin}\theta \mathrm{cos}\theta ,\\ {\overline{q }}_{36} &=\left({q}_{31}-{q}_{32}\right)\mathrm{sin}\theta \mathrm{cos}\theta ,\end{aligned}$$

where \({E}_{i}\), \({v}_{ij}\) and \({G}_{ij}\) are Young’s moduli, Poisson’s ratios, and shear moduli, respectively. Also, the coefficients \({\alpha }_{ij}\) and \({\beta }_{ij}\) are the thermal and hygroscopic expansion coefficients. The coefficients \({q}_{ij}\) indicate the magnetostrictive modules.

Appendix B

The coefficients \({\widehat{S}}_{ij}\), \({\widehat{M}}_{ij}\) and \({\widehat{C}}_{ij}\) (\(i=1, 2, 3\)) appeared in Eq. (34) are expanded as the following:

$$\begin{aligned} {\widehat{S}}_{11} &=\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left[{D}_{11}{\left(\frac{n\pi }{a}\right)}^{4}+{D}_{22}{\left(\frac{m\pi }{b}\right)}^{4}+2\left({D}_{12}+2{D}_{66}\right){\left(\frac{n\pi }{a}\right)}^{2}{\left(\frac{m\pi }{b}\right)}^{2}\right] +\left({K}_{P}+{F}_{x}\right){\left(\frac{n\pi }{a}\right)}^{2}+\left({K}_{P}+{F}_{y}\right){\left(\frac{m\pi }{b}\right)}^{2}+{K}_{W}, \\ {\widehat{S}}_{12} & =-\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left[{E}_{11}^{1}{\left(\frac{n\pi }{a}\right)}^{3}+\left({E}_{21}^{1}+2{E}_{66}^{1}\right)\frac{n\pi }{a}{\left(\frac{m\pi }{b}\right)}^{2}\right],\\ {\widehat{S}}_{13} & =-\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left[{E}_{22}^{1}{\left(\frac{m\pi }{b}\right)}^{3}+\left({E}_{12}^{1}+2{E}_{66}^{1}\right){\left(\frac{n\pi }{a}\right)}^{2}\frac{m\pi }{b}\right],\\ {\widehat{S}}_{22} & =\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left[{E}_{11}^{3}{\left(\frac{n\pi }{a}\right)}^{2}+{E}_{66}^{3}{\left(\frac{m\pi }{b}\right)}^{2}+{E}_{55}^{3}\right],\\ {\widehat{S}}_{23} & ={\widehat{S}}_{23}=\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left({E}_{12}^{3}+{E}_{66}^{3}\right)\frac{n\pi }{a}\frac{m\pi }{b}, \\ {\widehat{S}}_{33} & =\left(1+{\left.\mathrm{g}\frac{\partial }{\partial t}\right|}_{r=\mathrm{viscoelastic}}\right)\left[{E}_{66}^{2}{\left(\frac{n\pi }{a}\right)}^{2}+{E}_{22}^{3}{\left(\frac{m\pi }{b}\right)}^{2}+{E}_{44}^{3}\right],\\ {\widehat{M}}_{11} & =-{\beta }_{31}{\left(\frac{n\pi }{a}\right)}^{2}-{\beta }_{32}{\left(\frac{m\pi }{b}\right)}^{2}, \quad{\widehat{M}}_{21}={\gamma }_{31}\frac{n\pi }{a}, \quad{\widehat{M}}_{31}={\gamma }_{32}\frac{m\pi }{b},\\ {\widehat{M}}_{12} & ={\widehat{M}}_{13}={\widehat{M}}_{22}={\widehat{M}}_{23}={\widehat{M}}_{32}={\widehat{M}}_{33}=0,\\ {\widehat{C}}_{11}& ={I}_{2}\left[{\left(\frac{n\pi }{a}\right)}^{2}+{\left(\frac{m\pi }{b}\right)}^{2}\right]+{I}_{0}, \quad{\widehat{C}}_{12}=-{I}_{e}\frac{n\pi }{a},\quad {\widehat{C}}_{13}=-{I}_{e}\frac{m\pi }{b},\\ {\widehat{C}}_{22} & ={I}_{e}^{2}, \quad{\widehat{C}}_{23}=0, \quad {\widehat{C}}_{33}={I}_{e}^{2}.\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Nonlinear hygrothermal effects on the vibrations of a magnetostrictive viscoelastic laminated sandwich plate resting on an elastic medium. Archiv.Civ.Mech.Eng 21, 82 (2021). https://doi.org/10.1007/s43452-021-00230-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00230-6

Keywords

Navigation