Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Dynamic global monitoring needed to use restoration of forest cover as a climate solution

Restoration of forest cover can curtail the climate crisis and provide many co-benefits, or waste limited resources. To use restoration of forest cover to its highest potential, global dynamic monitoring is needed that combines existing restoration projects with control plots and remote-sensing technologies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three pillars of dynamic global monitoring for restoration of forest cover.

References

  1. Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  Google Scholar 

  2. Anderson, C. M. et al. Science 363, 933–934 (2019).

    Article  CAS  Google Scholar 

  3. Bastin, J.-F. et al. Science 365, 6–9 (2019).

    Article  Google Scholar 

  4. Cook-Patton, S. C. et al. Nature 585, 545–550 (2020).

    Article  CAS  Google Scholar 

  5. Holl, K. D. & Brancalion, P. S. Science 368, 580–582 (2020).

    Article  CAS  Google Scholar 

  6. Fargione, J. et al. Front. For. Glob. Change (in the press).

  7. West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).

    Article  CAS  Google Scholar 

  8. Brancalion, P. H. S. et al. L. Degrad. Dev. 32, 830–841 (2020).

    Article  Google Scholar 

  9. Sills, E. O. et al. PLoS ONE 10, e0132590 (2015).

    Article  Google Scholar 

  10. Ferraro, P. J. & Hanauer, M. M. Annu. Rev. Environ. Resour. 39, 495–517 (2014).

    Article  Google Scholar 

  11. Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).

    Article  Google Scholar 

  12. Reytar, K. et al. The challenge of tracking how a trillion trees grow. World Resources Institute https://www.wri.org/blog/2020/07/trillion-trees-tracking-challenges (2020).

  13. Shoch, D. et al. Methodology For Improved Forest Management (Family Forest Carbon Program, 2020).

  14. McDowell, N. G. et al. Science 368, eaaz9463 (2020).

    Article  CAS  Google Scholar 

  15. IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

Download references

Acknowledgements

We thank E. Belair and S. Yeo for their critical review. The writing of this Comment was supported by a grant from the Bezos Earth Fund.

Author information

Authors and Affiliations

Authors

Contributions

S.C.P., D.S. and P.E. developed the ideas for this Comment. S.C.P. wrote this Comment with editorial input from D.S. and P.E.

Corresponding author

Correspondence to Susan C. Cook-Patton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook-Patton, S.C., Shoch, D. & Ellis, P.W. Dynamic global monitoring needed to use restoration of forest cover as a climate solution. Nat. Clim. Chang. 11, 366–368 (2021). https://doi.org/10.1038/s41558-021-01022-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01022-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing