Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Matching the kinetics of natural enzymes with a single-atom iron nanozyme

Abstract

Developing artificial enzymes with the excellent catalytic performance of natural enzymes has been a long-standing goal for chemists. Single-atom catalysts with well-defined atomic structure and electronic coordination environments can effectively mimic natural enzymes. Here, we report an engineered FeN3P-centred single-atom nanozyme (FeN3P-SAzyme) that exhibits comparable peroxidase-like catalytic activity and kinetics to natural enzymes, by controlling the electronic structure of the single-atom iron active centre through the precise coordination of phosphorus and nitrogen. In particular, the engineered FeN3P-SAzyme, with well-defined geometric and electronic structures, displays catalytic performance that is consistent with Michaelis–Menten kinetics. We rationalize the origin of the high enzyme-like activity using density functional theory calculations. Finally, we demonstrate that the developed FeN3P-SAzyme with superior peroxidase-like activity can be used as an effective therapeutic strategy for inhibiting tumour cell growth in vitro and in vivo. Therefore, SAzymes show promising potential for developing artificial enzymes that have the catalytic kinetics of natural enzymes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and structural characterizations of FeN3P-SAzyme.
Fig. 2: Atomic structural analysis of FeN3P-SAzyme by XAFS.
Fig. 3: Peroxidase-like activity and kinetics of FeN3P-SAzyme.
Fig. 4: DFT studies on the peroxidase-like activity of FeN3P-SAzyme, FeN4-SAzyme and Fe3O4 nanozyme.
Fig. 5: FeN3P-SAzyme inhibits tumour cell growth in vitro and in vivo.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files. All other relevant source data are available from the corresponding authors upon reasonable request.

References

  1. Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Liang, M. & Yan, X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, S. et al. Design of high performance nanozymes: a single-atom strategy. Sci. China Life Sci. 62, 710–712 (2019).

    Article  PubMed  Google Scholar 

  6. Zhao, C. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55, 2285–2288 (2019).

    Article  CAS  Google Scholar 

  7. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, B. E. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, D., Shin, K., Kwon, S. G. & Hyeon, T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv. Mater. 30, e1802309 (2018).

    Article  PubMed  Google Scholar 

  10. Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R. & Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 1, 689–695 (2018).

    Article  CAS  Google Scholar 

  12. Cong, Y. et al. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 30, 1706220 (2018).

    Article  Google Scholar 

  13. Liu, Y., Zhao, Y. & Chen, X. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics 9, 3122–3133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, D. et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korschelt, K., Tahir, M. N. & Tremel, W. A step into the future: applications of nanoparticle enzyme mimics. Chem. Eur. J. 24, 9703–9713 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, L. & Yan, X. Nanozymes: an emerging field bridging nanotechnology and biology. Sci. China Life Sci. 59, 400–402 (2016).

    Article  PubMed  Google Scholar 

  17. Huang, L., Chen, J., Gan, L., Wang, J. & Dong, S. Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  21. Chen, Y. et al. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  CAS  Google Scholar 

  22. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  23. Li, H. et al. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. https://doi.org/10.1007/s40843-019-9426-x (2019).

  24. Ma, W. et al. A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 55, 159–162 (2019).

    Article  CAS  Google Scholar 

  25. Sun, T., Xu, L., Wang, D. & Li, Y. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 12, 2067–2080 (2019).

    Article  CAS  Google Scholar 

  26. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, B. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019).

    Article  CAS  Google Scholar 

  28. Jiao, L. et al. When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59, 2565–2576 (2020).

    Article  CAS  Google Scholar 

  29. Huo, M., Wang, L., Wang, Y., Chen, Y. & Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13, 2643–2653 (2019).

    CAS  PubMed  Google Scholar 

  30. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  31. Calvo, M. S. & Lamberg-Allardt, C. J. Phosphorus. Adv. Nutr. 6, 860–862 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cashman, K. D. & Flynn, A. Optimal nutrition: calcium, magnesium and phosphorus. Proc. Nutr. Soc. 58, 477–487 (2007).

    Article  Google Scholar 

  33. Koningsberger, D. & Prins, R. (eds) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley, 1988).

  34. Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Bar-Even, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Veitch, N. C. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  43. Meng, Y. et al. When density functional approximations meet iron oxides. J. Chem. Theory Comput. 12, 5132–5144 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, X., Zhang, X., Jin, L. & Feng, G. CO adsorption, oxidation and carbonate formation mechanisms on Fe3O4 surfaces. Phys. Chem. Chem. Phys. 19, 17287–17299 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Okudera, H., Kihara, K. & Matsumoto, T. Temperature dependence of structure parameters in natural magnetite: single crystal X-ray studies from 126 to 773 K. Acta Crystallogr., Sect. B: Struct. Sci. 52, 450–457 (1996).

    Article  Google Scholar 

  46. Huang, D. J. et al. Spin and orbital magnetic moments of Fe3O4. Phys. Rev. Lett. 93, 077204 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0205501, 2018YFA0702003), the National Natural Science Foundation of China (81722024, 21890383, 21871159, 21802076), the National Postdoctoral Program for Innovative Talents (BX20180160), the China Postdoctoral Science Foundation (2018M640113) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014078, 2018017). We thank the BL11B station at the Shanghai Synchrotron Radiation Facility and the 1W1B and 4B7A stations at the Beijing Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Contributions

M.L., D.W., X.Y. and Y.L. conceived the idea, designed the research project and co-wrote the manuscript. S.J. designed the synthesis and controlled the experiments, collected and analysed the data and wrote the manuscript. B.J. carried out the performance experiments and analysed the data. H.H. and R.G. contributed to the computational results and wrote the manuscript. Y.C. contributed to characterizations of samples, as well as helped to analyse the data and write the manuscript. J.D. performed XAFS data analysis. Y.M. contributed to the computational results and contributed to the manuscript. Z.Z. contributed to synthesis of samples. W.C., H.L., S.L. and Y.W. helped to test the XAFS measurement of samples. R.Z., Q.L. and D.D. contributed to grouping nude mice, tumour xenogeneic transplants and tail vein injections. Q.Z. and L.G. performed the AC HAADF-STEM characterizations. All the authors commented on the manuscript and have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Minmin Liang, Dingsheng Wang, Xiyun Yan or Yadong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–48, Tables 1–6 and Notes 1–4.

Reporting Summary

Supplementary Data 1.

Atomic coordinates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Jiang, B., Hao, H. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat Catal 4, 407–417 (2021). https://doi.org/10.1038/s41929-021-00609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00609-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer