Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics

Abstract

Studies of complement genetics have changed the landscape of thrombotic microangiopathies (TMAs), particularly atypical haemolytic uraemic syndrome (aHUS). Knowledge of complement genetics paved the way for the design of the first specific treatment for aHUS, eculizumab, and is increasingly being used to aid decisions regarding discontinuation of anti-complement treatment in this setting. Complement genetic studies have also been used to investigate the pathogenic mechanisms that underlie other forms of HUS and provided evidence that contributed to the reclassification of pregnancy- and postpartum-associated HUS within the spectrum of complement-mediated aHUS. By contrast, complement genetics has not provided definite evidence of a link between constitutional complement dysregulation and secondary forms of HUS. Therefore, the available data do not support systematic testing of complement genes in patients with typical HUS or secondary HUS. The potential relevance of complement genetics for distinguishing the underlying mechanisms of malignant hypertension-associated TMA should be assessed with caution owing to the overlap between aHUS and other causes of malignant hypertension. In all cases, the interpretation of complement genetics results remains complex, as even complement-mediated aHUS is not a classical monogenic disease. Such interpretation requires the input of trained geneticists and experts who have a comprehensive view of complement biology.

Key points

  • Knowledge of complement genetics has transformed the landscape of atypical haemolytic uraemic syndrome (aHUS) and other forms of HUS.

  • To date, aHUS is the only form of HUS that has been clearly associated with genetic susceptibility factors related to complement regulation.

  • Pregnancy- and postpartum-associated HUS is part of the spectrum of complement-mediated HUS.

  • Secondary forms of HUS do not share genetic risk factors with aHUS.

  • Malignant hypertension is highly prevalent in patients with aHUS; however, aHUS is a rare cause of malignant hypertension.

  • Interpretation of complement genetics results requires comprehensive expertise in complement biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Algorithm for the diagnosis of primary aHUS.
Fig. 2: Frequencies of rare variants in CFH, CFI, MCP, C3, CFB and THMD genes identified in TMA.

Similar content being viewed by others

References

  1. Fakhouri, F., Zuber, J., Fremeaux-Bacchi, V. & Loirat, C. Haemolytic uraemic syndrome. Lancet 217, 681–696 (2017).

    Article  Google Scholar 

  2. Warwicker, P. et al. Familial relapsing haemolytic uraemic syndrome and complement factor H deficiency. Nephrol. Dial. Transpl. 14, 1229–1233 (1999).

    Article  CAS  Google Scholar 

  3. Richards, A. et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 100, 12966–12971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Fremeaux-Bacchi, V. et al. The development of atypical haemolytic-uraemic syndrome is influenced by susceptibility factors in factor H and membrane cofactor protein: evidence from two independent cohorts. J. Med. Genet. 42, 852–856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fremeaux-Bacchi, V. et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J. Med. Genet. 41, e84 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fremeaux-Bacchi, V. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112, 4948–4952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goicoechea de Jorge, E. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 104, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Fakhouri, F. et al. Terminal complement inhibitor eculizumab in adult patients with atypical hemolytic uremic syndrome: a single-arm, open-label trial. Am. J. Kidney Dis. 2016, 84–93 (2016).

    Article  CAS  Google Scholar 

  10. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Bu, F. et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 25, 55–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Fremeaux-Bacchi, V. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 8, 554–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bu, F. et al. High-throughput genetic testing for thrombotic microangiopathies and C3 glomerulopathies. J. Am. Soc. Nephrol. 27, 1245–1253 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Osborne, A. J. et al. Statistical validation of rare complement variants provides insights into the molecular basis of atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Immunol. 200, 2464–2478 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system Part I — molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Fremeaux-Bacchi, V. et al. Complement gene variants and shiga toxin-producing escherichia coli-associated hemolytic uremic syndrome: retrospective genetic and clinical study. Clin. J. Am. Soc. Nephrol. 14, 364–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El Karoui, K. et al. Impact of hypertensive emergency and complement rare variants on presentation and outcome of atypical hemolytic uremic syndrome. Haematologica 104, 12 (2019).

    Article  CAS  Google Scholar 

  19. Bu, F. et al. Genetic analysis of 400 patients refines understanding and implicates a new gene in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 29, 2809–2819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaefer, F. et al. Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome. Kidney Int. 94, 408–418 (2018).

    Article  PubMed  Google Scholar 

  21. Le Quintrec, M. et al. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am. J. Transpl. 8, 1694–1701 (2008).

    Article  Google Scholar 

  22. Le Clech, A. et al. Atypical and secondary hemolytic uremic syndromes have a distinct presentation and no common genetic risk factors. Kidney Int. 95, 1443–1452 (2019).

    Article  PubMed  Google Scholar 

  23. Jodele, S. et al. The genetic fingerprint of susceptibility for transplant-associated thrombotic microangiopathy. Blood 127, 989–996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ardissino, G. et al. Acquired complement regulatory gene mutations and hematopoietic stem cell transplant-related thrombotic microangiopathy. Biol. Blood Marrow Transpl. 23, 1580–1582 (2017).

    Article  CAS  Google Scholar 

  25. Gavriilaki, E. et al. Pretransplant genetic susceptibility: clinical relevance in transplant-associated thrombotic microangiopathy. Thromb. Haemost. 120, 638–646 (2020).

    Article  PubMed  Google Scholar 

  26. Auton, A. et al. A global reference for human genetic variation. Nature. 526, 68–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Bruel, A. et al. Hemolytic uremic syndrome in pregnancy and postpartum. Clin. J. Am. Soc. Nephrol. 12, 1237–1247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaggl, M. et al. Maternal and fetal outcomes of pregnancies in women with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 29, 1020–1029 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Huerta, A. et al. A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int. 93, 450–459 (2018).

    Article  PubMed  Google Scholar 

  30. Cavero, T. et al. Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int. 96, 995–1004 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Vaught, A. J. et al. Germline mutations in the alternative pathway of complement predispose to HELLP syndrome. JCI Insight 3, e99128 (2018).

    Article  PubMed Central  Google Scholar 

  32. Fakhouri, F. et al. Factor H, membrane cofactor protein, and factor I mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome. Blood 112, 4542–4545 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Crovetto, F. et al. The genetics of the alternative pathway of complement in the pathogenesis of HELLP syndrome. J. Matern. Fetal Neonatal Med. 25, 2322–2325 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Arjona, E., Huerta, A., Goicoechea de Jorge, E. & Rodriguez de Cordoba, S. Familial risk of developing atypical hemolytic-uremic syndrome. Blood. 136, 1558–1561 (2020).

    Article  PubMed  Google Scholar 

  35. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Merinero, H. M., Garcia, S. P., Garcia-Fernandez, J., Arjona, E., Tortajada, A. & Rodriguez de Cordoba, S. Complete functional characterization of disease-associated genetic variants in the complement factor H gene. Kidney Int. 93, 470–481 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Marinozzi, M. C. et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J. Am. Soc. Nephrol. 25, 2053–2065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seddon, J. M. et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat. Genet. 45, 1366–1370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  Google Scholar 

  41. Roumenina, L. T. et al. A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 119, 4182–4191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gale, D. P. et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376, 794–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noris, M. et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood 124, 1715–1726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palomo, M. et al. Complement activation and thrombotic microangiopathies. Clin. J. Am. Soc. Nephrol. 14, 1719–1732 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Timmermans, S. et al. C5b9 formation on endothelial cells reflects complement defects among patients with renal thrombotic microangiopathy and severe hypertension. J. Am. Soc. Nephrol. 29, 2234–2243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galbusera, M. et al. An Ex vivo test of complement activation on endothelium for individualized eculizumab therapy in hemolytic uremic syndrome. Am. J. Kidney Dis. 74, 56–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Zuber, J. et al. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transpl. Rev. 27, 117–125 (2013).

    Article  Google Scholar 

  48. Ardissino, G. et al. Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: an update. Am. J. Kidney Dis. 66, 172–173 (2015).

    Article  PubMed  Google Scholar 

  49. Fakhouri, F. et al. Pathogenic variants in complement genes and risk of atypical hemolytic uremic syndrome relapse after eculizumab discontinuation. Clin. J. Am. Soc. Nephrol. 12, 50–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Wetzels, J. F. & van de Kar, N. C. Discontinuation of eculizumab maintenance treatment for atypical hemolytic uremic syndrome. Am. J. Kidney Dis. 65, 342 (2015).

    Article  PubMed  Google Scholar 

  51. Zuber, J. et al. Use of highly individualized complement blockade has revolutionized clinical outcomes after kidney transplantation and renal epidemiology of atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 30, 2449–2463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fakhouri, F. et al. Eculizumab discontinuation in children and adults with atypical haemolytic uremic syndrome: a prospective multicentric study. Blood https://doi.org/10.1182/blood.2020009280 (2020).

    Article  PubMed  Google Scholar 

  53. Delvaeye, M. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holmes, L. V. et al. Determining the population frequency of the CFHR3/CFHR1 deletion at 1q32. PLoS One 8, e60352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dragon-Durey, M. A. et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J. Am. Soc. Nephrol. 21, 2180–2187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Puraswani, M. et al. Clinical and immunological profile of anti-factor h antibody associated atypical hemolytic uremic syndrome: a nationwide database. Front. Immunol. 10, 1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Challis, R. C. et al. Thrombotic microangiopathy in inverted formin 2-mediated renal disease. J. Am. Soc. Nephrol. 28, 1084–1091 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Stahl, A. L. et al. A novel mutation in the complement regulator clusterin in recurrent hemolytic uremic syndrome. Mol. Immunol. 46, 2236–2243 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Azukaitis, K. et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase epsilon. J. Am. Soc. Nephrol. 28, 3066–3075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bruneau, S. et al. Loss of DGKepsilon induces endothelial cell activation and death independently of complement activation. Blood 125, 1038–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Grange, S. et al. Adult-onset renal thrombotic microangiopathy and pulmonary arterial hypertension in cobalamin C deficiency. Lancet 386, 1011–1012 (2015).

    Article  PubMed  Google Scholar 

  62. Canigral, C. et al. Eculizumab for the treatment of pregnancy-related atypical hemolytic uremic syndrome. Ann. Hematol. 93, 1421–1422 (2013).

    PubMed  Google Scholar 

  63. Chua, J., Paizis, K., He, S. Z. & Mount, P. Suspected atypical haemolytic uraemic syndrome in two post-partum patients with foetal-death in utero responding to eculizumab. Nephrology 22, 18–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. De Sousa Amorim, E., Blasco, M., Quintana, L., Sole, M., de Cordoba, S. R. & Campistol, J. M. Eculizumab in pregnancy-associated atypical hemolytic uremic syndrome: insights for optimizing management. J. Nephrol. 28, 641–645 (2015).

    Article  PubMed  CAS  Google Scholar 

  65. Delmas, Y., Bordes, C., Loirat, C., Fremeaux-Bacchi, V. & Combe, C. Post-partum atypical haemolytic-uraemic syndrome treated with eculizumab: terminal complement activity assessment in clinical practice. Clin. Kidney J. 6, 243–244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kourouklaris, A. et al. Postpartum thrombotic microangiopathy revealed as atypical hemolytic uremic syndrome successfully treated with eculizumab: a case report. J. Med. Case Rep. 8, 307 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zschiedrich, S., Prager, E. P. & Kuehn, E. W. Successful treatment of the postpartum atypical hemolytic uremic syndrome with eculizumab. Ann. Intern. Med. 159, 76 (2013).

    Article  PubMed  Google Scholar 

  68. Bayer, G. et al. Etiology and outcomes of thrombotic microangiopathies. Clin. J. Am. Soc. Nephrol. 14, 557–566 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Frimat, M. et al. Renal cortical necrosis in postpartum hemorrhage: a case series. Am J Kidney Dis. 68, 50–57 (2016).

    Article  PubMed  Google Scholar 

  70. Haeger, M. et al. Increased release of tumor necrosis factor-alpha and interleukin-6 in women with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Acta Obstet. Gynecol. Scand. 75, 695–701 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Vaught, A. J. et al. Direct evidence of complement activation in HELLP syndrome: A link to atypical hemolytic uremic syndrome. Exp. Hematol. 44, 390–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salmon, J. E. et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 8, e1001013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Penning, M. et al. Classical complement pathway activation in the kidneys of women with preeclampsia. Hypertension 66, 117–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Yonekura Collier, A. R. et al. Placental sFLT1 is associated with complement activation and syncytiotrophoblast damage in preeclampsia. Hypertens. Pregnancy 38, 193–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Bu, F. et al. Soluble c5b-9 as a biomarker for complement activation in atypical hemolytic uremic syndrome. Am. J. Kidney Dis. 65, 968–969 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Servais, A. et al. Atypical haemolytic uraemic syndrome and pregnancy: outcome with ongoing eculizumab. Nephrol. Dial. Transpl. 31, 2122–2130 (2016).

    Article  CAS  Google Scholar 

  77. Kelly, R. J. et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 373, 1032–1039 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Cavero, T. et al. Eculizumab in secondary atypical haemolytic uraemic syndrome. Nephrol. Dial. Transpl. 32, 466–474 (2017).

    Article  CAS  Google Scholar 

  79. Fakhouri, F. et al. Insights from the use in clinical practice of eculizumab in adult patients with atypical hemolytic uremic syndrome affecting the native kidneys: an analysis of 19 cases. Am. J. Kidney Dis. 63, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Timmermans, S. et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 91, 1420–1425 (2017).

    Article  PubMed  Google Scholar 

  81. van den Born, B. H. et al. ESC Council on hypertension position document on the management of hypertensive emergencies. Eur. Heart J. Cardiovasc. Pharmacother. 5, 37–46 (2019).

    Article  PubMed  Google Scholar 

  82. Timmermans, S. et al. Diagnostic and risk factors for complement defects in hypertensive emergency and thrombotic microangiopathy. Hypertension 75, 422–430 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Goodship, T. H. et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 91, 539–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Rubin, S. et al. Malignant hypertension: diagnosis, treatment and prognosis with experience from the Bordeaux cohort. J. Hypertens. 37, 316–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. El Karoui, K. et al. A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J. Am. Soc. Nephrol. 23, 137–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lane, D. A., Lip, G. Y. & Beevers, D. G. Improving survival of malignant hypertension patients over 40 years. Am. J. Hypertens. 22, 1199–1204 (2009).

    Article  PubMed  Google Scholar 

  87. Lip, G. Y., Beevers, M. & Beevers, D. G. Complications and survival of 315 patients with malignant-phase hypertension. J. Hypertens. 13, 915–924 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Polgreen, L. A., Suneja, M., Tang, F., Carter, B. L. & Polgreen, P. M. Increasing trend in admissions for malignant hypertension and hypertensive encephalopathy in the United States. Hypertension 65, 1002–1007 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. van den Born, B. J., Koopmans, R. P., Groeneveld, J. O. & van Montfrans, G. A. Ethnic disparities in the incidence, presentation and complications of malignant hypertension. J. Hypertens. 24, 2299–2304 (2006).

    Article  PubMed  CAS  Google Scholar 

  90. Shantsila, A., Shantsila, E., Beevers, D. G. & Lip, G. Y. H. Predictors of 5-year outcomes in malignant phase hypertension: the West Birmingham Malignant Hypertension Registry. J. Hypertens. 35, 2310–2314 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Larsen, C. P., Wilson, J. D., Best-Rocha, A., Beggs, M. L. & Hennigar, R. A. Genetic testing of complement and coagulation pathways in patients with severe hypertension and renal microangiopathy. Mod. Pathol. 31, 488–494 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Fadi Fakhouri.

Ethics declarations

Competing interests

F.F. has received consultancy and/or speaker honoraria from Roche, Alexion, Apellis, Achillion, Novartis and Alnylam. V.F.-B has received fees from Alexion Pharmaceuticals, Roche, Apellis, Novartis and Baxter for invited lectures and/or board membership and is the recipient of a research grant from Alexion Pharmaceuticals and Apellis.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genome Aggregation Database (gnomAD): https://gnomad.broadinstitute.org/

Supplementary information

Glossary

Next-generation sequencing

A high-throughput methodology that enables rapid sequencing of the base pairs in DNA samples.

Sanger sequencing

This ‘first-generation’ DNA sequencing method is considered to be the gold standard for validating DNA sequences, including those that have been obtained using next-generation sequencing.

Multiplex ligation-dependent probe amplification

A multiplex assay to detect copy number variations of genomic DNA sequences.

Non-allelic homologous recombination

A molecular mechanism of exchange between two long segments of DNA (~300 bp or longer) that have very high sequence homology.

Combined annotation dependent depletion

(CADD). An in silico tool that is designed to predict the pathogenicity of variants. CADD scores are based on diverse genomic features derived from the surrounding sequence context, gene model annotations, evolutionary constraint, epigenetic measurements and functional predictions. In silico predictive scores should be used, at most, as supporting evidence of pathogenicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhouri, F., Frémeaux-Bacchi, V. Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics. Nat Rev Nephrol 17, 543–553 (2021). https://doi.org/10.1038/s41581-021-00424-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00424-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing