Skip to main content
Log in

Evaluation of Residual Stresses in Steel Products Using Magnetic Methods

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

In this paper, the literature data on the results of theoretical and experimental studies aimed at the development of the scientific foundations of evaluation of residual stresses in ferromagnetic materials according to the measurements of their magnetic parameters are analyzed. The data that indicate the reasonability of multiparameter control for the extension of the range of controlled residual stresses and a decrease in the uncertainty of the results of testing are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kudryavtsev, I.V., Vliyanie ostatochnykh napryazhenii na ustalostnuyu prochnost’ stali (Effect of Residual Stresses on Fatigue Strength of Steel), Moscow: VINITI, 1957.

  2. Kudryavtsev, P.I., Ostatochnye svarochnye napryazheniya i prochnost’ izdelii (Residual Welding Stresses and Product Strength), Moscow: Mashinostroenie, 1964.

  3. Kolmogorov, G.L., Kuznetsov, E.V., and Tiunov, V.V., Tekhnologicheskie ostatochnye napryazheniya i ikh vliyanie na dolgovechnost’ i nadezhnost’ metalloizdelii (Technological Residual Stresses and Their Effect on the Durability and Reliability of Metal Products), Perm: Permsk. Nats. Issled. Politekh. Univ., 2012.

  4. Chernyshev, G.N., Popov, A.L., and Kozintsev, V.M., Useful and dangerous residual stress, Priroda (Moscow), 2002, no. 10, p. 17.

  5. Totten, G.E., Handbook of Residual Stresses and Deformation of Steel, ASM Int., 2002.

    Google Scholar 

  6. Birger, I.A., Ostatochnye napryazheniya (Residual Stresses), Moscow: Mashgiz, 1963.

  7. Bigus, G.A. and Daniev, Yu.F., Tekhnicheskaya diagnostika opasnykh proizvodstvennykh ob’’ektov (Technical Diagnostics of Hazardous Production Facilities), Moscow: Nauka, 2010.

  8. Makhutov, N.A., Prochnost’ i bezopasnost’: Fundamental’nye i prikladnye issledovaniya (Strength and Safety: Basic and Applied Research), Novosibirsk: Nauka, 2008.

  9. Fortov, V.E., Makhutov, N.A., Moskvichev, V.V., and Fomin, V.M., Mashinostroenie Rossii: Tekhnika Sibiri, Severa i Arktiki (Mechanical Engineering of Russia: Technology of Siberia, the North, and the Arctic), Krasnoyarsk: Sib. Fed. Univ., 2018.

  10. Rozhkov, I.I. and Myl’nikov, V.V., Calculation of internal residual stresses arising in hardened parts of machines after chemical-thermal treatment, Mezhdunar. Zh. Eksp. Obraz., 2014, nos. 1–2, p. 114.

  11. Makhutov, N.A., Gadenin, M.M., Odintsev, I.N., and Razumovsky, I.A., Methods of the calculation and experimental determination of the local residual stresses under spectrum development of complex loading, J. Mach. Manuf. Reliab., 2015, vol. 44, pp. 531–538.

    Article  Google Scholar 

  12. Sakhvadze, G.Zh., Features of finite element modeling of residual stresses arising in material under laser shock-wave processing using the intrinsic deformations method, J. Mach. Manuf. Reliab., 2018, vol. 47, pp. 373–379.

    Article  Google Scholar 

  13. Murugan, N. and Narayan, R., Finite element simulation of residual stresses and their measurement by contour method, Mater. Des., 2009, vol. 30, no. 6, p. 2067.

    Article  Google Scholar 

  14. Grib, V.V., Diagnostika tekhnicheskogo sostoyaniya oborudovaniya neftegazokhimicheskikh ob’’ektov (Diagnostics of the Technical Condition of Equipment of Oil and Gas Chemical Facilities), Moscow: TsNIITEneftekhim, 2002.

  15. Bogatov, A.A., Residual stresses and metal fracture, in Innovatsionnye tekhnologii v metallurgii i mashinostroenii (Innovative Technologies in Metallurgy and Mechanical Engineering), Yekaterinburg: Al’fa-Print, 2013, p. 95.

  16. Birger, I.A., Drozdov, B.M., and Kazantsev, A.S., Otsenka mekhanicheskikh metodov opredeleniya ostatochnykh napryazhenii. Novye metody ispytaniya i obrabotki materialov (Assessment of Mechanical Methods for Determining Residual Stresses. New Methods of Testing and Processing Materials), Minsk: Nauka Tekh., 1975, p. 23.

  17. Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods of Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

  18. Nerazrushayushchii kontrol’. Spravochnik (Nondestructive Testing. Handbook), Klyuev, V.V., Eds., Moscow: Mashinostroenie, 2003, vol. 2.

    Google Scholar 

  19. Withersand, P.J. and Bhadeshia, H.K.D.H., Residual stress part 2 – nature and origins, Mater. Sci. Technol., 2001, vol. 17, p. 366.

    Article  Google Scholar 

  20. Nikitina, N.E., Akustouprugost’. Opyt prakticheskogo primeneniya (Acoustoelasticity. Experience of Practical Application), Nizhny Novgorod: TALAM, 2005.

  21. Ageev, V.A., Determination of residual stresses using X-rays, Zh. Tekh. Fiz., 1958, vol. 28, no. 11.

  22. Rentgenografiya v primenenii k issledovaniyu materialov (Radiography as Applied to the Study of Materials), Kurdyumov, G.V., Ed., Moscow: ONTI NKTP, 1936.

    Google Scholar 

  23. Munsi, A.S., Waddell, A.J., and Walker, C.A., A method for determining X-ray constants for the measurement of residual stress, Strain, 2003, vol. 39, p. 3.

    Article  Google Scholar 

  24. Davidenkov, N.N., On residual stresses, Zavod. Lab., 1935, no. 6, p. 688.

  25. Davidenkov, N.N., Dinamicheskie ispytaniya metallov (Dynamic Testing of Metals), Moscow: ONTI, 1936.

  26. Nolze, G., The determination of residual stress, Conference: Powder Diffraction, Kolkata, India, 2002.

  27. Davidenkov, N.N., On the issue of classification and manifestation of residual stresses, Zavod. Lab., 1959, no. 3, p. 318.

  28. Gorkunov, E.S., Zadvorkin, S.M., and Goruleva, L.S., Specific features of the determination of residual stresses in materials by diffraction techniques, AIP Conf. Proc., 2017, vol. 1915, artic. no. 030006.

  29. Ekobori, T., Fizika i mekhanika razrusheniya i prochnosti tverdykh tel (Physics and Mechanics of Fracture and Strength of Solids), Moscow: Metallurgiya, 1971.

  30. Residual Stresses in Metals and Metal Construction, Osgood, W.R., Ed., New York: Reinhold, 1954.

    Google Scholar 

  31. Cagliotti, V. and Sachs, G., Die Entwicklung von Eigenspannungen durch Dehnen, Z. Phys., 1932, vol. 74, p. 647.

    Article  Google Scholar 

  32. Golubkov, V.M., Il’ina, V.A., Kritskaya, V.K., Kurdyumov, G.V., and Perkas, M.D., Study of the physical factors that determine the hardening of alloyed iron, in Problemy metallovedeniya i fiziki metallov (Problems of Metallurgy and Physics of Metals), Moscow: Metall. Izd., 1958, p. 65.

  33. Rusakov, A.A., Rentgenografiya metallov (Radiography of Metals), Moscow: Atomizdat, 1977.

  34. Landau, L.D. and Lifshits, E.M., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, in Collected Papers of L.D. Landau, Oxford: Pergamon, 1965, pp. 101–114.

  35. Krinchik, G.S., Fizika magnitnykh yavlenii (Physics of Magnetic Phenomena), Moscow: Mosk. Gos. Univ., 1985.

  36. Bar’yakhtar, V.G. and Ivanov, B.A., V mire magnitnykh domenov (In the World of Magnetic Domains), Kiev: Nauk. Dumka, 1986.

  37. Tikadzumi, S., Fizika ferromagnetizma. Magnitnye kharakteristiki i prakticheskie primeneniya (Physics of Ferromagnetism. Magnetic Characteristics and Practical Application), Moscow: Mir, 1987.

  38. Barkhausen, H., Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinungen, Phys. Z., 1919, vol. 20, no. 17, p. 401.

    Google Scholar 

  39. Rudyak, V.M., The Barkhausen effect, Sov. Phys. Usp., 1971, vol. 13, pp. 461–479.

    Article  Google Scholar 

  40. Vengrinovich, V.L., Vintov, D.A., Prudnikov, A.N., Podugol’nikov, P.A., and Ryabtsev, V.N., Features of stress measurement in ferromagnets using the Barkhausen effect method, Kontrol, Diagn., 2017, no. 8, p. 10.

  41. Vonsovskii, S.V. and Shur, Ya.S., Ferromagnetizm (Ferromagnetism), Moscow: OGIZ, 1948.

    Google Scholar 

  42. Becker, R. and Doring, W., Ferromagnetismus, Berlin: Springer, 1939.

    Book  MATH  Google Scholar 

  43. Jiles, D.C., Microstructure and stress dependence of the magnetic properties of steels, in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, D.E., Eds., Boston: Springer, 1990, p. 1821.

    Google Scholar 

  44. Villary, E., Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen, Ann. Phys. Chem., 1865, vol. 126, p. 87.

    Article  Google Scholar 

  45. Belov, K.P., Uprugie, teplovye i elektricheskie yavleniya v ferromagnitnykh metallakh (Elastic, Thermal, and Electrical Phenomena in Ferromagnetic Metals), Moscow: Gostekhizdat, 1951.

  46. Akulov, N.S., Ferromagnetizm (Ferromagnetism), Moscow–Leningrad, 1939.

    Google Scholar 

  47. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities. Handbook), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  48. Gorkunov, E.S., Zadvorkin, S.M., Mushnikov, A.N., and Povolotskaya, A.M., Studying magnetoelastic effects in ferromagnetic structural materials, X International Conference Navy and Shipbuilding Nowadays NSN Proceedings, 2019, p. 26.

  49. Bozorth, R.M., The present status of ferromagnetic theory, Bell. Syst. Tech. J., 1936, vol. 15, no. 1, pp. 63–91.

    Article  MATH  Google Scholar 

  50. Kondorskii, E.I., On the nature of the coercive force and irreversible changes during magnetization, Zh. Eksp. Teor. Fiz., 1937, vol. 7, p. 1117.

    Google Scholar 

  51. Kuleev, V.G. and Gorkunov, E.S., Mechanisms of the influence of internal and external stresses on the coercive force of ferromagnetic steels, Defektoskopiya, 1997, no. 11, p. 3.

  52. Shcherbinin, V.V. and Gorkunov, E.S., Magnitnyi kontrol' kachestva metallov (Magnetic Quality Control of Metals), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

  53. Klyuev, V.V., Nerazrushayushchii kontrol’ i diagnostika: Sprav. (Nondestructive Testing and Diagnostics: Handbook), Moscow: Mashinostroenie, 2005.

  54. Bida, V.G. and Nichipuruk, A.P., Coercimetry in nondestructive testing, Defektoskopiya, 2000, no. 10, p. 3.

  55. Vicena, F., On the connection between the coercive force of a ferromagnetic and internal stress, Cech. Fiz. Z., 1954, vol. 4, p. 436–438.

    Google Scholar 

  56. Mahalov, M.S. and Blumenstein, V.Yu, Non-destructive testing of residual stresses by magnetic methods under conditions of simple stressing, Russ. Eng. Res., 2016, vol. 36, pp. 520–525.

    Article  Google Scholar 

  57. Gorkunov, E.S., Mitropol’skaya, S.Yu., Zadvorkin, S.M., Shershneva, L.S., and Tueva, E.A., The influence of internal and external stresses on the magnetic properties of pipe steel after controlled rolling, Deform. Razru-shenie Mater., 2010, no. 6, p. 35.

  58. Gorkunov, E.S., Zadvorkin, S.M., Goruleva, L.S., and Bukhvalov, A.B., On the efficiency of using magnetic and electrical parameters for nondestructive testing of microdistortions of the crystal lattice in carbon steels after heat treatment, Defektoskopiya, 2012, no. 3, p. 27.

  59. Gorkunov, E.S., Zadvorkin, S.M., and Goruleva, L.S., Comparison of magnetic parameters of hardened pipe steels with residual macro- and microstresses determined by the X-ray method, Defektoskopiya, 2019, no. 5, p. 22.

  60. Arkad’ev, V.K., Elektromagnitnye protsessy v metallakh. Ch. 1. Postoyannoe elektricheskoe i magnitnoe pole (Electromagnetic Processes in Metals. Part 1. Constant Electric and Magnetic Field), Moscow: ONTI NKTP, 1934.

  61. Mes’kin, V.S., Ferromagnitnye splavy (Ferromagnetic Alloys), Moscow–Leningrad: ONTI NKTP, 1937.

  62. Gorkunov, E.S., Zadvorkin, S.M., Goruleva, L.S., Tueva, E.A., Veselov, I.N., Yakovleva, S.P., Makharova, S.N., and Mordovskoi, P.G., Effect of equal-channel angular pressing modes on mechanical and magnetic properties of 09G2S steel, Defektoskopiya, 2012, no. 10, p. 18.

  63. Filinov, V.V., Shaternikov, V.E., and Arakelov, P.G., Control of technological stresses by the method of magnetic noise, Defektoskopiya, 2014, no. 12, p. 58.

  64. Stupakov, A., Takagi, T., and Kolarik, K., Barkhausen noise testing of residual stresses introduced by surface hardening techniques, Conference: 18th International Workshop on Electromagnetic Non-destructive Evaluation, Bratislava, 2013.

  65. Suvi Santa-aho, Minnamari Vippola, Tuomo Saarinen, Matti Isakov, Aki Sorsa, Mari Lindgren, Kauko Leiviskä, Toivo Lepistö, Barkhausen noise characterisation during elastic bending and tensile-compression loading of case-hardened and tempered samples, J. Mater. Sci., 2012, vol. 47, p. 6420.

    Article  Google Scholar 

  66. Vourna, P., Ktena, A., Tsakiridis, P.E., and Hristoforou, E., An accurate evaluation of the residual stress of welded electrical steels with magnetic barkhausen noise, Measurement, 2015, vol. 71, p. 31.

    Article  Google Scholar 

  67. Ilker Yelbay H., Ibrahim Cam, and Hakan Gur, Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique, NDT&E Int., 2010, vol. 43, p. 29.

    Article  Google Scholar 

  68. Hizli, H. and Hakan Gür, C., Applicability of the Magnetic Barkhausen Noise method for nondestructive measurement of residual stresses in the carburized and tempered 19CrNi5H steels, Res. Nondestr. Eval., 2018, vol. 29, no. 4, p. 221.

    Article  Google Scholar 

  69. Vengrinovich, V.L., Yakunin, V.P., Legotin, S.D., and Bus’ko, V.N., On the question of the thickness of the informative layer in magnetic noise structuroscopy, Defektoskopiya, 1986, no. 2, p. 89.

  70. Filinov, V.V., Arakelov, P.G., Kunin, N.T., and Golovchenko, D.A., To the question of the thickness of the informative layer during magnetic noise control, Defektoskopiya, 2019, no. 1, p. 32.

  71. Stupakov, O., Perevertov, O., Tomáš, I., and Skrbek, B., Evaluation of surface decarburization depth by Magnetic Barkhausen Noise technique, J. Magn. Magn. Mater., 2011, vol. 323, p. 1692.

    Article  Google Scholar 

  72. Moorthy, V., Shaw, B.A., Mountford, P., and Hopkins, P., Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel, Acta Mater., 2005, vol. 53, p. 4997.

    Article  Google Scholar 

  73. Klyuev, V.V., Vasil’ev, V.M., Degtyarev, A.P., and Esilevskii, V.P., On the static theory of the relationship between the characteristics of the Barkhausen effect and the parameters of the hysteresis loop, Fiz. Met. Metal-loved., 1981, vol. 52, no. 5, p. 971.

    Google Scholar 

  74. Kirenskii, L.V., Salanskii, N.M., and Rodichev, A.M., The Barkhausen effect when the hysteresis loop approaches rectangular one, Fiz. Met. Metalloved., 1963, vol. 16, no. 4, p. 630.

    Google Scholar 

  75. Stupakov, O., Pal’a, J., Yurchenko, V.V., Tomas, I., and Bydzovsky, J., Measurement of Barkhausen noise and its correlation with magnetic permeability, J. Magn. Magn. Mater., 2008, vol. 320, nos. 3–4, p. 204.

    Article  Google Scholar 

  76. Hristoforou, E., Vourna, P., Ktena, A., and Svec, P., On the universality of the dependence of magnetic parameters on residual stresses in steels, IEEE Trans. Magn., 2016, vol. 52, p. 1.

    Article  Google Scholar 

  77. Vourna, P., Ktena, A., Tsakiridis, P.E., and Hristoforou, E., A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels, NDT&E Int., 2015, vol. 71, p. 33.

    Article  Google Scholar 

  78. Vourna, P., Ktena, A., Tsakiridis, P.E., and Hristoforou, E., Magnetic residual stresses monitoring technique for ferromagnetic steels, Metals, 2018, vol. 8, p. 592.

    Article  Google Scholar 

  79. Gorkunov, E.S., Somova, V.M., and Nichipuruk, A.P., USSR Inventor’s Certificate no. SU 1578624A1, 1990.

  80. Gorkunov, E.S., Khamitov, V.A., Bartynev, O.A., Somova, V.M., and Volkov, V.A., Magnetoelastic acoustic emission in heat treated structural steels, Defektoskopiya, 1987, no. 3, p. 3.

  81. Dahl, O., Pfaffenberger, J., and Sprung, H., Neue magnetische Werkstoffe fur Pupinspulen, Elektr. Nachr. Tech., 1933, vol. 10, p. 317.

    Google Scholar 

  82. Abuku, S. and Cullity, B.D., A magnetic method for the determination of residual stress, Exp. Mech., 1971, vol. 11, p. 217.

    Article  Google Scholar 

  83. Gorkunov, E.S., Zadvorkin, S.M., and Goruleva, L.S., Correlation of residual stresses with magnetic properties of Armco Iron, AIP Conf. Proc., 2018, vol. 2053, artic. no. 030022.

  84. Kuleev, V.G. and Tsar’kova, T.P., Effect of plastic deformations and heat treatment on the behavior of the coercive force under load, Phys. Met. Metallogr., 2007, vol. 104, pp. 461–468.

    Article  Google Scholar 

  85. Kuleev, V.G., Stashkov, A.N., Tsar’kova, T.P., and Nichipuruk, A.P., Experimental determination of irreversible displacement fields of 90-degree domain boundaries in plastically deformed low-carbon steels, Defektoskopiya, 2018, no. 10, p. 37.

  86. Stashkov, A.N., Kuleev, V.G., Shchapova, E.A., and Nichipuruk, A.P., Investigation of dependences of reversible permeability on the field in plastically deformed low-carbon steels, Defektoskopiya, 2018, no. 12, p. 35.

  87. Kuleev, V.G., Degtyarev, M.V., Stashkov, A.N., and Nichipuruk, A.P., On the origin of peaks of differential magnetic permeability in low-carbon steels after plastic deformation, Phys. Met. Metallogr., 2019, vol. 120, pp. 128–132.

    Article  Google Scholar 

  88. Kuleev, V.G., Stashkov, A.N., and Nichipuruk, A.P., Reasons for the difference of the fields of the peaks of the reversible and differential magnetic permeability in deformed low-carbon steels, Phys. Met. Metallogr., 2019, vol. 120, no. 7, p. 688.

    Google Scholar 

  89. Vonsovskii, S.V., Effect of weak elastic stresses on the initial reversible susceptibility of ferromagnets, Zh. Eksp. Teor. Fiz., 1947, vol. 17, no. 12, p. 1094.

    Google Scholar 

  90. Greshnikov, V.A. and Drobot, Yu.B., Akusticheskaya emissiya (Acoustic Emissions), Moscow: Izd. Stand., 1976.

  91. Kobayashi, E. and Sano, K., Microstructure dependence of acoustic emission in magnetization process, Trans. ISIJ, 1985, vol. 25, p. 128.

    Google Scholar 

  92. Yudin, A.A. and Lopatin, M.V., K teorii magnitnoi akusticheskoi emissii (On the Theory of Magnetic Acoustic Emission), Available from VINITI, 1987, no. 3158-B-877.

  93. Gorkunov, E.S., Ul’yanov, A.I., and Khamitov, V.A., Magnetoelastic acoustic emission in ferromagnetic materials, Defektoskopiya, 2002, no. 5, p. 87.

  94. Vasil’ev, A.N. and Gaidukov, Yu.P., Electromagnetic excitation of sound in metals, Sov. Phys. Usp., 1983, vol. 26, no. 11, p. 952.

    Article  Google Scholar 

  95. Kontorovich, V.M. and Glutsyuk, A.M., Transformation of sound and electromagnetic waves at the boundary of a conductor in a magnetic field, Zh. Eksp. Teor. Fiz., 1961, vol. 41, p. 1195.

    MATH  Google Scholar 

  96. Komarov, V.A., Kvazistatsionarnoe elektromagnitno-akusticheskoe preobrazovanie v metallakh (Quasi-Stationary Electromagnetic-Acoustic Transformation in Metals), Sverdlovsk: UNTs AN SSSR, 1986.

  97. Komarov, V.A., Electromagnetic-acoustic conversion—a method of nondestructive testing, Sov. Phys. Usp., 1986, vol. 29, no. 9, p. 891.

    Article  Google Scholar 

  98. Gorkunov, E.S., Khamitov, V.A., and Bartenev, O.A., Investigation of the possibility of controlling internal stresses in ferromagnetic steels by the method of magneto-elastic acoustic emission, Tezisy dokl. nauch.-tekhn. konf. “Sovremennye metody nerazrushshoshchego kontrolya i ikh metrologicheskoe obespechenie” (Abstracts Sci.-Tech. Conf. Current Methods of Nondestructive Testing and Their Metrological Support), Izhevsk, 1986, p. 38.

  99. Ng, D.H.L., Jakubovics, J.P., Scruby, C.B., and Briggs, G.A.D., Effect of stress on magnetoacoustic emission from mild steel and nickel, J. Magn. Magn. Mater., 1992, vol. 104, p. 355.

    Article  Google Scholar 

  100. Tochilin, S.B., Jakubovics, J.P., and Briggs, G.A.D., Use of magnetoacoustic emission for studying stress in industrial components, IEEE Trans. Magn., 1995, vol. 31, no. 6, p. 4163.

    Article  Google Scholar 

  101. Namkung, M., Heyman, J.S., Allison, S.G., and Ultata, D., Low-field magnetoacoustic residual stress measurement in steel, NDT&E Int., 1987, vol. 24, p. 301.

    Google Scholar 

  102. Komarov, V.A. and Muzhitskii, V.F., Features of electromagnetic-acoustic conversion in the presence of mechanical stresses. III Internal stresses, Defektoskopiya, 2005, no. 11, p. 70.

  103. Komarov, V.A., Magnetoelastic electromagnetic-acoustic conversion part 5*. Relationship between applied and internal stresses with EMAT in the Joule effect, Kontrol, Diagn., 2019, vol. 253, no. 7, p. 14.

    Google Scholar 

  104. Murav’ev, V.V., Volkova, L.V., Platunov, A.V., and Kulikov, V.A., Electromagnetic-acoustic method for studying the stress-strain state of rails, Defektoskopiya, 2016, no. 7, p. 12.

  105. Fujisawa Kazuo, Murayama Riichi, Yonehara Sadao, and Sakamoto Haruo, Nondestructive measurement of residual stress in railroad wheel by EMAT (electromagnetic acoustic transducer), NDT&E Int., 1995, vol. 28, no. 2, p. 113.

    Google Scholar 

  106. Gorkunov, E.S., Zadvorkin, S.M., and Solomein, M.N., Using the method of electromagnetic-acoustic transformation for assessing microstresses in steels, Defektoskopiya, 2004, no. 7, p. 26.

  107. Gorkunov, E.S., Zadvorkin, S.M., Rodionova, S.S., Solomein, M.N., and Tsar’kova, T.P., Estimation of internal microstresses in high-carbon steels by the parameters of electromagnetic-acoustic transformation, Defektoskopiya, 1999, no. 9, p. 38.

  108. Mel’gui, M.A., Multiparameter methods of magnetic structuroscopy and devices for their implementation (review), part I. Multiparameter magnetic structuroscopy using the parameters of the hysteresis loop, measured in a electromagnet–product closed magnetic circuit, Defektoskopiya, 2015, no. 2, p. 27.

  109. Muzhitskii, V.F., Sultanov, M.Kh., Zagidulin, R.V., and Makarov, P.S., A multiparameter method for assessing the stress-strain state of steel products and pipelines, Kontrol, Diagn., 2006, no. 8, p. 17.

  110. Lachmann, C., Nitschke-Pagel, T., and Wohlfahrt, H., Characterisation of residual stress relaxation in fatigue loaded welded joints by X-ray diffraction and barkhausen noise method materials, Sci. Forum, 2000, vols. 347–349, p. 374.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Academician E.S. Gorkunov for help in the preparation of this review.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-18-50065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Goruleva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadvorkin, S.M., Goruleva, L.S. Evaluation of Residual Stresses in Steel Products Using Magnetic Methods. J. Mach. Manuf. Reliab. 50, 118–132 (2021). https://doi.org/10.3103/S1052618821020151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618821020151

Keywords:

Navigation