Skip to main content
Log in

Compressed Sensing-Speech Coding Scheme for Mobile Communications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new source coding is proposed for secure and robust speech communications. The method is based on the combination of compressed sensing and split-multistage vector quantization. The proposed codec is integrated in an end-to-end communication system, and its performance is investigated in real mobile communication conditions. Channel compensation techniques are considered to mitigate the Rayleigh channel effects usually observed in mobile communications. Using the proposed speech coding scheme instead of current standards (e.g., AMR-WB) within the communication system results in a new end-to-end mobile communication design. The proposed design increases the transmission speed, robustness, and security without additional costs. For a bit rate of 8.85 kbit/s and in 10 dB Rayleigh environment, the recovered speech has a good perceptual evaluation of speech quality score close to 3.14 and a fair coherence speech intelligibility index value of around 0.47. Comparison with recent CS-based speech coding methods shows the merit of the proposed coder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. M.K. Al-Azawi, A.M. Gaze, Combined speech compression and encryption using chaotic compressive sensing with large key size. IET Signal Process. 12(2), 214–218 (2018). https://doi.org/10.1049/iet-spr.2016.0708

    Article  Google Scholar 

  2. B. Bessette, R. Salami, R. Lefebvre, M. Jelinek, J. Rotola-Pukkila, J. Vainio, H. Mikkola, K. Jarvinen, The adaptive multirate wideband speech codec (AMR-WB). IEEE Trans. Speech Audio Process. 10(8), 620–636 (2002). https://doi.org/10.1109/tsa.2002.804299

    Article  Google Scholar 

  3. V. Cambareri, M. Mangia, F. Pareschi, R. Rovatti, G. Setti, Low-complexity multiclass encryption by compressed sensing. IEEE Trans. Signal Process. 63(9), 2183–2195 (2015). https://doi.org/10.1109/tsp.2015.2407315

    Article  MathSciNet  MATH  Google Scholar 

  4. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008). https://doi.org/10.1109/MSP.2007.914731

    Article  Google Scholar 

  5. H. Chen, C.H. Vun, A feature-based compressive spectrum sensing technique for cognitive radio operation. Circuits Syst. Signal Process. 37(3), 1287–1314 (2018). https://doi.org/10.1007/s00034-017-0610-x

    Article  MathSciNet  Google Scholar 

  6. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ferroukhi, A. Ouahabi, M. Attari, Y. Habchi, A. Taleb-Ahmed, Medical video coding based on 2nd-generation wavelets: performance evaluation. Electronics (2019). https://doi.org/10.3390/electronics8010088

    Article  Google Scholar 

  8. J.S. Garofolo, L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, N.L. Dahlgren, DARPA TIMIT acoustic-phonetic continuous speech corpus (1993)

  9. D. Giacobello, M.G. Christensen, M.N. Murthi, S.H. Jensen, M. Moonen, Sparse linear prediction and its applications to speech processing. IEEE Trans. Audio Speech Lang. Process. 20(5), 1644–1657 (2012). https://doi.org/10.1109/tasl.2012.2186807

    Article  Google Scholar 

  10. H. Haneche, B. Boudraa, A. Ouahabi, Compressed sensing investigation in an end-to-end rayleigh communication system: Speech compression. In: 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), pp. 73–77. IEEE (2018). https://doi.org/10.1109/saconet.2018.8585702

  11. H. Haneche, B. Boudraa, A. Ouahabi, A new way to enhance speech signal based on compressed sensing. Measurement 151, 107117 (2020). https://doi.org/10.1016/j.measurement.2019.107117

    Article  Google Scholar 

  12. H. Haneche, A. Ouahabi, B. Boudraa, New mobile communication system design for Rayleigh environments based on compressed sensing-source coding. IET Commun. (2019). https://doi.org/10.1049/iet-com.2018.5348

    Article  Google Scholar 

  13. Y. Hu, P.C. Loizou, Evaluation of objective quality measures for speech enhancement. IEEE Trans. Audio Speech Lang. Process. 16(1), 229–238 (2008). https://doi.org/10.1109/tasl.2007.911054

    Article  Google Scholar 

  14. Y. Ji, W.P. Zhu, B. Champagne, Recurrent neural network-based dictionary learning for compressive speech sensing. Circuits Syst. Signal Process. 38(8), 3616–3643 (2019). https://doi.org/10.1007/s00034-019-01058-5

    Article  Google Scholar 

  15. J.M. Kates, K.H. Arehart, Coherence and the speech intelligibility index. J. Acoust. Soc. Am. 117(4), 2224–2237 (2005). https://doi.org/10.1121/1.1862575

    Article  Google Scholar 

  16. H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011). https://doi.org/10.1109/tbme.2011.2156795

    Article  Google Scholar 

  17. S. Mun, J.E. Fowler, Dpcm for quantized block-based compressed sensing of images. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1424–1428. IEEE (2012)

  18. A. Ouahabi, Signal and Image Multiresolution Analysis (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  19. R. Paderna, D.Q. Thang, Y. Hou, T. Higashino, M. Okada, Low-complexity compressed sensing-based channel estimation with virtual oversampling for digital terrestrial television broadcasting. IEEE Trans. Broadcast. PP(99), 1–10 (2016). https://doi.org/10.1109/TBC.2016.2606938

    Article  Google Scholar 

  20. A. Ravelomanantsoa, A. Rouane, H. Rabah, N. Ferveur, L. Collet, Design and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensors. Circuits Syst. Signal Process. 36(7), 2875–2892 (2017). https://doi.org/10.1007/s00034-016-0444-y

    Article  Google Scholar 

  21. D.L. Ruyet, M. Pischella, Digital Communications 1: Source and Channel Coding, 2nd edn. (Wiley, Hoboken, 2015)

    Book  Google Scholar 

  22. C. Salah-Eddine, B. Merouane, Robust coding of wideband speech immittance spectral frequencies. Speech Commun. 65, 94–108 (2014). https://doi.org/10.1016/j.specom.2014.07.001

    Article  Google Scholar 

  23. D. Salomon, Data Compression: The Complete Reference, 4th edn. (Springer, London, 2007)

    MATH  Google Scholar 

  24. S. Sekkate, M. Khalil, A. Adib, Speaker identification for OFDM-based aeronautical communication system. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01026-z

    Article  Google Scholar 

  25. A. Shirazinia, S. Chatterjee, M. Skoglund, Joint source-channel vector quantization for compressed sensing. IEEE Trans. Signal Process. 6(14), 3667–3681 (2014). https://doi.org/10.1109/tsp.2014.2329649

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process. (2018). https://doi.org/10.1007/s00034-018-0909-2

    Article  Google Scholar 

  27. G.L. Stuber, Principles of Mobile Communication, 3rd edn. (Springer, New York, 2011)

    Google Scholar 

  28. M. Vanidevi, N. Selvaganesan, Channel estimation for finite scatterers massive multi-user mimo system. Circuits Syst. Signal Process. 36(9), 3761–3777 (2017). https://doi.org/10.1007/s00034-016-0489-y

    Article  MATH  Google Scholar 

  29. M. Vidyasagar, An Introduction to Compressed Sensing (SIAM, Philadelphia, 2020)

    MATH  Google Scholar 

  30. A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967). https://doi.org/10.1109/TIT.1967.1054010

    Article  MATH  Google Scholar 

  31. J. Wang, Y. Lee, C. Lin, S. Wang, C. Shih, C. Wu, Compressive sensing-based speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 24(11), 2122–2131 (2016). https://doi.org/10.1109/TASLP.2016.2598306

    Article  Google Scholar 

  32. T. Xue, X. Dong, Y. Shi, Multiple access and data reconstruction in wireless sensor networks based on compressed sensing. IEEE Trans. Wirel. Commun. 12(7), 3399–3411 (2013). https://doi.org/10.1109/TW.2013.060413.121184

    Article  Google Scholar 

  33. A. Yang, A. Ganesh, Z. Zhou, S.S. Sastry, Y. Ma, Fast l1-minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234–3246 (2013). https://doi.org/10.1109/TIP.2013.2262292

    Article  Google Scholar 

  34. C. Ye, G. Gui, L. Xu, Compressive sensing signal reconstruction using l0-norm normalized least mean fourth algorithms. Circuits Syst. Signal Process. 37(4), 1724–1752 (2018). https://doi.org/10.1007/s00034-017-0626-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houria Haneche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haneche, H., Ouahabi, A. & Boudraa, B. Compressed Sensing-Speech Coding Scheme for Mobile Communications. Circuits Syst Signal Process 40, 5106–5126 (2021). https://doi.org/10.1007/s00034-021-01712-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01712-x

Keywords

Navigation