Skip to main content
Log in

Compact Galaxies with Active Star Formation from the SDSS DR14: Star-Formation Rates Derived from Combinations of Luminosities in Different Wavelength Ranges

  • EXTRAGALACTIC ASTRONOMY
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Physical characteristics of a large sample of compact galaxies with active star formation from the SDSS DR14 are derived. The sample includes approximately 30 000 compact isolated galaxies with angular diameters <6″. The emission lines Hβ with equivalent widths EW(Hβ) ≥ 1 nm are observed in the spectra of selected galaxies. The stellar masses of compact galaxies are distributed in a wide range from 105M to 1011M with a maximum at ~109M. The oxygen abundances for the bulk of compact galaxies are distributed in the range 7.8…8.2 with a maximum at ~8.05. Compact galaxies are characterized with high specific star-formation rates of 10…100 Gyr–1. The SDSS spectroscopic data were supplemented by photometric data in the far- and near-ultraviolet ranges from the GALEX and in the mid-infrared range at 22 μm from the WISE all-sky surveys. The star-formation rate, concisely named “composite” one, was determined using combinations of two out of five observed luminosities: luminosity L(Hα) in the emission line Hα, monochromatic luminosities in the ultraviolet continuum L(FUV), and L(NUV) and in the mid-infrared continuum L(22 μm) as well as the total luminosities in the infrared range L(TIR). “Composite” star formation rates in compact galaxies with active star formation are compared with those determined from the extinction- and spectral aperture-corrected luminosities of galaxies in the hydrogen emission line Hβ. Relations for “composite” star formation rates with different combinations of indicators were obtained, which are mutually consistent and correspond to star-formation rates SFR(Hβ) derived from the luminosities of galaxies in the hydrogen emission line Hβ, corrected for extinction and spectral aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. Abolfathi, D. S. Aguado, G. Aguilar, et al., “The fourteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the Apache Point Observatory galactic evolution experiment,” Astrophys. J., Suppl. Ser. 235, 42 (2018).

    Article  ADS  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571, 16 (2014).

    Article  Google Scholar 

  3. J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters for the emission line spectra of extragalactic objects,” Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    Article  ADS  Google Scholar 

  4. A. J. Battisti, D. Calzetti, B. D. Johnson, and D. Elbaz, “Continuous mid-infrared star formation rate in dicators: Diagnostics for 0 < z < 3 star-forming galaxies,” Astrophys. J. 800, 143 (2015).

    Article  ADS  Google Scholar 

  5. D. Calzetti, S.-Y. Wu, S. Hong, et al., “The calibration of monochromatic far-infrared star formation rate indicators,” Astrophys. J. 714, 1256–1279 (2010).

    Article  ADS  Google Scholar 

  6. D. A. Dale, G. J. Bendo, C. W. Engelbracht, et al., “Infrared spectral energy distributions of nearby galaxies,” Astrophys. J. 633, 857–870 (2005).

    Article  ADS  Google Scholar 

  7. C. W. Engelbracht, G. H. Rieke, K. D. Gordon, et al., “Metallicity effects on dust properties in starbursting galaxies,” Astrophys. J. 678, 804–827 (2008).

    Article  ADS  Google Scholar 

  8. C.-N. Hao, R. C. Kennicutt, Jr., B. D. Johnson, et al., “Dust-corrected star formation rates of galaxies. II. Combinations of ultraviolet and infrared tracers,” Astrophys. J. 741, 124 (2011).

    Article  ADS  Google Scholar 

  9. J. Iglesias-Páramo, V. Buat, T. T. Takeuchi, et al., “Star formation in the nearby universe: The ultraviolet and infrared points of view,” Astrophys. J., Suppl. Ser. 164, 38–51 (2006).

    Article  ADS  Google Scholar 

  10. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and C. Henkel, “Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey,” Astron. Astrophys. 561, 33 (2014).

    Article  ADS  Google Scholar 

  11. Y. I. Izotov, N. G. Guseva, K. J. Fricke, et al., “The efficiency of ionizing photon production and the radiation energy balance in compact star-forming galaxies,” Mon. Not. R. Astron. Soc. 467, 4118–4130 (2017).

    Article  ADS  Google Scholar 

  12. G. Kauffmann, T. M. Heckman, C. Tremonti, et al., “The host galaxies of active galactic nuclei,” Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    Article  ADS  Google Scholar 

  13. R. C. Kennicutt, Jr., “Star formation in galaxies along the Hubble sequence,” Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    Article  ADS  Google Scholar 

  14. R. C. Kennicutt, Jr., L. Armus, G. Bendo, et al., “SINGS: The SIRTF nearby galaxies survey,” Publ. Astron. Soc. Pac. 115, 928–952 (2003).

    Article  ADS  Google Scholar 

  15. R. C. Kennicutt, Jr., C.-N. Hao, D. Calzetti, et al., “Dust-corrected star formation rates of galaxies. I. Combinations of Hα and infrared tracers,” Astrophys. J. 703, 1672–1695 (2009).

    Article  ADS  Google Scholar 

  16. P. Kroupa, “On the variation of the initial mass function,” Mon. Not. R. Astron. Soc. 322, 231 (2001).

    Article  ADS  Google Scholar 

  17. C. J. Lonsdale, H. E. Smith, M. Rowan-Robinson, et al., “SWIRE: The SIRTF wide-area infrared extragalactic survey,” Publ. Astron. Soc. Pac. 115, 897–927 (2003).

    Article  ADS  Google Scholar 

  18. E. J. Murphy, J. J. Condon, E. Schinnerer, et al., “Calibrating extinction-free star formation rate diagnostics with 33 GHz free-free emission in NGC6946,” Astrophys. J. 737, 67 (2011).

    Article  ADS  Google Scholar 

  19. M. J. O’Dowd, D. Schiminovich, B. D. Johnson, et al., “SSGSS: The Spitzer-SDSS-GALEX spectroscopic survey,” Astrophys. J. 741, 79 (2011).

    Article  ADS  Google Scholar 

  20. A. Rémy-Ruyer, S. C. Madden, F. Galliano, et al., “Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel,” Astron. Astrophys. 557, 95 (2013).

    Article  Google Scholar 

  21. G. H. Rieke, A. Alonso-Herrero, B. J. Weiner, et al., “Determining star formation rates for infrared galaxies,” Astrophys. J. 692, 556–573 (2009).

    Article  ADS  Google Scholar 

  22. E. E. Salpeter, “The luminosity function and stellar evolution,” Astrophys. J. 121, 161–167 (1955).

    Article  ADS  Google Scholar 

  23. M. Treyer, D. Schiminovich, B. D. Johnson, et al., “Mid-infrared spectral indicators of star formation and active galactic nucleus activity in normal galaxies,” Astrophys. J. 719, 1191–1211 (2005).

    Article  ADS  Google Scholar 

  24. F. Walter, J. M. Cannon, H. Roussel, et al., “Dust and atomic gas in dwarf irregular galaxies of the M81 Group: the SINGS and THINGS view,” Astrophys. J. 661, 102–114 (2007).

    Article  ADS  Google Scholar 

  25. H. Wu, C. Cao, C.-N. Hao, F.-S. Liu, et al., “PAH and mid-infrared luminosities as measures of star formation rate in SPITZER First Look Survey galaxies,” Astrophys. J., Lett. 632, L79–L82 (2005).

    Article  ADS  Google Scholar 

  26. Y. Wu, V. Charmandaris, L. Hao, et al., “Mid-infrared properties of low-metallicity blue compact dwarf galaxies from the SPITZER infrared spectrograf,” Astrophys. J. 639, 157–172 (2006).

    Article  ADS  Google Scholar 

  27. F. Zhang, L. Li, X. Kang, et al., “Uncertainties in the calibrations of star formation rate,” Mon. Not. R. Astron. Soc. 433, 1039–1053 (2013).

    Article  ADS  Google Scholar 

  28. Y.-N. Zhu, H. Wu, C. Cao, and H.-N. Li, “Correlations between mid-infrared, far-infrared, Hα, and FUV luminosities for Spitzer SWIRE field galaxies,” Astrophys. J. 686, 155–171 (2008).

    Article  ADS  Google Scholar 

Download references

Funding

I. Izotova carried out work within the framework of the Astronomy and Physics of Space program of Taras Shevchenko National University of Kyiv (project 19BF023-01). The publication uses observational data from the Wide-field Infrared Survey Explorer (WISE), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. The work used data from the NASA/IPAC Extragalactic Database (NED), which is administered by the Jet Propulsion Laboratory, California Institute of Technology, in a contract with the National Aeronautics and Space Administration.

GALEX is a NASA mission that is administered by the Jet Propulsion Laboratory.

The SDSS-III project (http://www.sdss3.org/) was financially supported by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. SDSS-III is administered by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, the University of Cambridge, Carnegie Mellon University, the University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, the University of Portsmouth, Princeton University, the Spanish Participation Group, the University of Tokyo, the University of Utah, Vanderbilt University, the University of Virginia, the University of Washington, and Yale University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Y. Izotova or Y. I. Izotov.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izotova, I.Y., Izotov, Y.I. Compact Galaxies with Active Star Formation from the SDSS DR14: Star-Formation Rates Derived from Combinations of Luminosities in Different Wavelength Ranges. Kinemat. Phys. Celest. Bodies 37, 53–63 (2021). https://doi.org/10.3103/S0884591321020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321020033

Keywords:

Navigation