Skip to main content
Log in

Exocometary Activity Around Stars at Different Evolutionary Stages: Current Issues

  • PHYSICS OF STARS AND INTERSTELLAR MEDIUM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Modern theories of planetary system formation predict a large population of planetesimals, which are remnants of the primordial matter of the protoplanetary cloud and, at the same time, embryos of small bodies that we observe in our solar system. The planetesimals play an important role in the dynamic and physical evolution of the planetary system. Gravitational scattering of planetesimals which are enriched with volatile elements might cause the volatile and organic compounds to enter the interior of the planetary system, triggering the formation of planetary atmospheres and further development of life. Small bodies inside planetary systems can evaporate due to the increasing insolation at close distances from the mother star, leading to the development of activity akin to the activity of comets in our solar system. The study of cometary activity in our solar system is aimed primarily at the investigation of the physical processes in the early stages of the development of the protoplanetary cloud. Until recently, it was not possible to study small bodies in other planetary systems because their small size makes it very difficult to detect by direct methods. Over the past 10 years, two space missions, Kepler and TESS (The Transiting Exoplanet Survey Satellite), have been equipped for continuous photometric monitoring to find exoplanets by transit, i. e. monitoring the changes in brightness of a star due to the passage of a smaller object across its disk. The presence of high-precision photometric measurements of the luminosity curves of about 200 000 stars, which are available in the public domain, potentially makes it possible to identify rather small changes in the luminosity curves of stars due to the passage of a body with gas-dust coma (exocomet) across the stellar disk. The article considers a number of issues related to the discovery and study of exocomets. The main detection methods based on the analysis of photometric and spectral series of observational data of space missions as well as ground-based observational complexes are considered. We provide a brief review of the main projects devoted to the results of theoretical modeling and experimental studies of the manifestations of exocometary activity. Known cases of manifestations of exocometary activity in planetary systems of stars of different spectral classes are described and the main characteristics of such stars and their planetary systems are given. We discuss the prospects for further research of these still very exotic objects. The importance of such research for understanding evolutionary processes in our own solar system is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. URL: https://archive.stsci.edu/kepler/data_search/search.php

  2. URL: https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html

  3. URL: https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite

REFERENCES

  1. A. Baglin, M. Auvergne, P. Barge, et al., “Scientific objectives for a minisat: CoRoT,” in The CoRoT Mission Pre-Launch Status — Stellar Seismology and Planet Finding, Ed. by M. Fridlund, A. Baglin, J. Lochard, and L. Conroy (European Space Agency, Noordwijk, 2006), p. 33.

    Google Scholar 

  2. A. Bardyn, D. Baklouti, H. Cottin, et al., “Carbon-rich dust in comet 67P/Churyumov–Gerasimenko measured by COSIMA/Rosetta,” Mon. Not. R. Astron. Soc. 469, S712–S722 (2017).

    Article  Google Scholar 

  3. A. Bar-Nun, D. Laufer, O. Rebolledo, et al., “Gas trapping in ice and its release upon warming,” in The Science of Solar System Ices, Ed. by M. S. Gudipati and J. Castillo-Rogez (Springer-Verlag, New York, 2013), in Ser.: Astrophysics and Space Science Library, Vol. 356, pp. 487–499.

  4. D. P. Bennett, J. Anderson, J. P. Beaulieu, et al., “An extrasolar planet census with a space-based microlensing survey,” arXiv e-print (2007). arXiv 0704.0454

  5. H. Beust, A. M. Lagrange-Henri, A. V. Madjar, and R. Ferlet, “The beta Pictoris circumstellar disk. X. Numerical simulations of infalling evaporating bodies,” Astron. Astrophys. 236, 202 (1990).

    ADS  Google Scholar 

  6. N. Biver, D. Bockelée-Morvan, G. Paubert, et al., “The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS),” Astron. Astrophys. 619, A127 (2018).

    Article  Google Scholar 

  7. W. J. Borucki, D. Koch, G. Basri, et al., “Kepler planet-detection mission: Introduction and first results,” Science 327, 977 (2010).

    Article  ADS  Google Scholar 

  8. W. J. Borucki and A. L. Summers, “The photometric method of detecting other planetary systems,” Icarus 58, 121–134 (1984).

    Article  ADS  Google Scholar 

  9. S. Borysenko, A. Baransky, E. Kuehrt, et al., “Study of the physical properties of selected active objects in the main belt and surrounding regions by broad band photometry,” Astron. Nachr. 341, 849–859 (2020).

    Article  ADS  Google Scholar 

  10. T. S. Boyajian, D. M. LaCourse, S. A. Rappaport, et al., “Planet Hunters IX. KIC 8462852 — Where’s the flux?,” Mon. Not. R. Astron. Soc. 457, 3988–4004 (2016).

    Article  ADS  Google Scholar 

  11. C. Ceccarelli, E. Caux, M. Wolfire, et al., “ISO detection of CO(+) toward the protostar IRAS 16293-2422,” Astron. Astrophys. 331, L17–L20 (1998).

    ADS  Google Scholar 

  12. G. Cevolani, G. Bortolotti, and A. Hajduk, “Debris from comet Halley, comet’s mass loss and age,” Nuovo Cimento C 10, 587–591 (1987).

    Article  ADS  Google Scholar 

  13. J. L. Christiansen, J. M. Jenkins, D. A. Caldwell, et al., “The derivation, properties, and value of Kepler’s combined differential photometric precision,” Publ. Astron. Soc. Pac. 124, 1279 (2012).

    Article  ADS  Google Scholar 

  14. B. D. Clarke, D. A. Caldwell, E. V. Quintana, et al., “Pixel level calibrations,” in Kepler Data Processing Handbook, Kepler Science Document KSCI-19081-002 (NASA Ames Research Center, Moffett Field, Cal., 2017).

  15. A. L. Cochran, A.-C. Levasseur-Regourd, M. Cordiner, et al., “The composition of comets,” Space Sci. Rev. 197, 9–46 (2015).

    Article  ADS  Google Scholar 

  16. M. R. Combi, Y. Lee, T. S. Patel, et al., “SOHO/SWAN Observations of short-period spacecraft target comets,” Astron. J. 141, 128 (2011).

    Article  ADS  Google Scholar 

  17. C. Eiroa, I. Rebollido, B. Montesinos, et al., “Exocomet signatures around the A-shell star φ Leonis?,” Astron. Astrophys. 594, L1 (2016).

    Article  ADS  Google Scholar 

  18. R. Ferlet, L. M. Hobbs, and A. V. Madjar, “The beta Pictoris circumstellar disk. V. Time variations of the CA II-K line,” Astron. Astrophys. 185, 267–270 (1987).

    ADS  Google Scholar 

  19. G. J. Flynn, P. Bleuet, J. Borg, et al., “Elemental compositions of comet 81P/Wild 2 samples collected by stardust,” Science 314, 1731 (2006).

    Article  ADS  Google Scholar 

  20. J. W. Gangestad, G. A. Henning, R. Y. R. Persinger, and G. R. Ricker, “A high Earth, Lunar resonant orbit for lower cost space science missions,” arXiv e-print (2013). arXiv 1306.5333

  21. J. S. Greaves, W. S. Holland, B. C. Matthews, et al., “Gas and dust around A-type stars at tens of Myr: Signatures of cometary breakup,” Mon. Not. R. Astron. Soc. 461, 3910–3917 (2016).

    Article  ADS  Google Scholar 

  22. M. R. Haas, N. M. Batalha, S. T. Bryson, et al., “Kepler science operations,” Astrophys. J., Lett. 713, L115–L119 (2010).

    Article  ADS  Google Scholar 

  23. S. B. Howell, C. Sobeck, M. Haas, et al., “The K2 mission: Characterization and early results,” Publ. Astron. Soc. Pac. 126, 398 (2014).

    Article  ADS  Google Scholar 

  24. H. H. Hsieh, L. Denneau, R. J. Wainscoat, et al., “The main-belt comets: The Pan-STARRS1 perspective,” Icarus 248, 289–312 (2015).

    Article  ADS  Google Scholar 

  25. J. M. Jenkins, “Overview of the science operations center,” in Kepler Data Processing Handbook, Kepler Science Document KSCI-19081-002 (NASA Ames Research Center, Moffett Field, Cal., 2017).

  26. J. M. Jenkins, D. A. Caldwell, H. Chandrasekaran, et al., “Initial characteristics of Kepler long cadence data for detecting transiting planets,” Astrophys. J., Lett. 713, L120–L125 (2010).

    Article  ADS  Google Scholar 

  27. D. Jewitt, H. Hsieh, and J. Agarwal, “The active asteroids,” in Asteroids IV, Ed. by Patrick Michel, Francesca E. DeMeo, and William F. Bottke (Univ. Arizona Press, Tucson, Ariz., 2015), pp. 221–241.

  28. G. H. Jones, M. M. Knight, K. Battams, et al., “The science of sungrazers, sunskirters, and other near-sun comets,” Space Sci. Rev. 214, 20 (2018).

    Article  ADS  Google Scholar 

  29. G. M. Kennedy, G. Hope, S. T. Hodgkin, and M. C. Wyatt, “An automated search for transiting exocomets,” Mon. Not. R. Astron. Soc. 482, 5587–5596 (2019).

    Article  ADS  Google Scholar 

  30. F. Kiefer, A. Lecavelier des Etangs, J. C. Augereau, et al., “Exocomets in the circumstellar gas disk of HD 172555,” Astron. Astrophys. 561, L10 (2014).

    Article  ADS  Google Scholar 

  31. F. Kiefer, A. Lecavelier des Etangs, J. Boissier, et al., “Two families of exocomets in the beta Pictoris system,” Nature 514, 462–464 (2014).

    Article  ADS  Google Scholar 

  32. F. Kiefer, A. Lecavelier des Etangs, and A. Vidal-Madjar, “Exocomets in the disk of two young A-type stars,” in Proc. Annual Meeting of the French Society of Astronomy and Astrophysics (SF2A-2014), Paris, June 3–6, 2014, Ed. by J. Ballet, F. Martins, F. Bournaud, R. Monier, and C. Reylé (French Society of Astronomy and Astrophysics, 2014), pp. 39–43.

  33. P. P. Korsun, I. V. Kulyk, O. V. Ivanova, et al., “Dust tail of the active distant Comet C/2003 WT42 (LINEAR) studied with photometric and spectroscopic observations,” Icarus 210, 916–929 (2010).

    Article  ADS  Google Scholar 

  34. Á. Kóspál, A. Moór, A. Juhász, et al., “ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997,” Astrophys. J. 776, 77 (2013).

    Article  ADS  Google Scholar 

  35. Q. Kral, L. Matrà, M. C. Wyatt, and G. M. Kennedy, “Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals,” Mon. Not. R. Astron. Soc. 469, 521–550 (2017).

    Article  ADS  Google Scholar 

  36. A. M. Lagrange, N. Meunier, P. Rubini, et al., “Evidence for an additional planet in the β Pictoris system,” Nat. Astron. 3, 1135–1142 (2019).

    Article  ADS  Google Scholar 

  37. A. M. Lagrange-Henri, H. Beust, R. Ferlet, L. M. Hobbs, and A. V. Madjar, “HR 10: A new beta Pictoris-like star?,” Astron. Astrophys. 227, L13–L16 (1990).

    ADS  Google Scholar 

  38. A. M. Lagrange-Henri, A. Vidal-Madjar, and R. Ferlet, “The beta Pictoris circumstellar disk. VI. Evidence for material falling on to the star,” Astron. Astrophys. 190, 275–282 (1988).

    ADS  Google Scholar 

  39. A. Lecavelier Des Etangs, A. Vidal-Madjar, and R. Ferlet, “Photometric stellar variation due to extra-solar comets,” Astron. Astrophys. 343, 916–922 (1999).

    ADS  Google Scholar 

  40. E. E. Mamajek and C. P. M. Bell, “On the age of the β Pictoris moving group,” Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

    Article  ADS  Google Scholar 

  41. G. W. Marcy, R. P. Butler, E. Williams, et al., “The planet around 51 Pegasi,” Astrophys. J. 481, 926–935 (1997).

    Article  ADS  Google Scholar 

  42. S. Marino, L. Matra, C. Stark, et al., “Exocometary gas in the HD 181327 debris ring,” Mon. Not. R. Astron. Soc. 460, 2933–2944 (2016).

    Article  ADS  Google Scholar 

  43. S. Marino, M. C. Wyatt, Pani. O., et al., “ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30 M planets?,” Mon. Not. R. Astron. Soc. 465, 2595–2615 (2017).

    Article  ADS  Google Scholar 

  44. L. Matrà, M. A. MacGregor, P. Kalas, et al., “Detection of exocometary CO within the 440 Myr old Fomalhaut belt: A similar CO+CO2 ice abundance in exocomets and Solar system comets,” Astrophys. J. 842, 9 (2017).

    Article  ADS  Google Scholar 

  45. M. Mayor and D. Queloz, “Jupiter-mass companion to a solar-type star,” Nature 378, 355–359 (1995).

    Article  ADS  Google Scholar 

  46. K. J. Meech and J. Svoren, “Using cometary activity to trace the physical and chemical evolution of cometary nuclei,” in Comets II, Ed. by M. C. Festou, H. U. Keller, and H. A. Weaver (Univ. of Arizona Press, Tucson, Ariz., 2004), pp. 317–335.

    Google Scholar 

  47. S. L. Montgomery and B. Y. Welsh, “Detection of variable gaseous absorption features in the debris disks around young A-type stars,” Publ. Astron. Soc. Pac. 124, 1042 (2012).

    Article  ADS  Google Scholar 

  48. S. L. Montgomery and B. Y. Welsh, “Unusually high circumstellar absorption variability around the δ Scuti /λ Boötis star HD 183324,” Mon. Not. R. Astron. Soc. 468, L55–L58 (2017).

    Article  ADS  Google Scholar 

  49. A. Moór, T. Henning, A. Juhász, et al., “Discovery of molecular gas around HD 131835 in an APEX molecular line survey of bright debris disks,” Astrophys. J. 814, 42 (2015).

    Article  ADS  Google Scholar 

  50. M. J. Mumma and S. B. Charnley, “The chemical composition of comets — Emerging taxonomies and natal heritage,” Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    Article  ADS  Google Scholar 

  51. S. Rappaport, A. Vanderburg, T. Jacobs, et al., “Likely transiting exocomets detected by Kepler,” Mon. Not. R. Astron. Soc. 474, 1453–1468 (2018).

    Article  ADS  Google Scholar 

  52. W. T. Reach, M. S. Kelley, and J. Vaubaillon, “Survey of cometary CO2, CO, and particulate emissions using the Spitzer Space Telescope,” Icarus 226, 777–797 (2013).

    Article  ADS  Google Scholar 

  53. I. Rebollido, C. Eiroa, B. Montesinos, et al., “The co-existence of hot and cold gas in debris discs,” Astron. Astrophys. 614, A3 (2018).

    Article  Google Scholar 

  54. G. R. Ricker, J. N. Winn, R. Vanderspek, et al., “Transiting Exoplanet Survey Satellite (TESS),” J. Astron. Telesc., Instrum., Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  55. P. Rousselot, P. P. Korsun, I. V. Kulyk, et al., “Monitoring of the cometary activity of distant comet C/2006 S3 (LONEOS),” Astron. Astrophys. 571, A73 (2014).

    Article  Google Scholar 

  56. J. Schneider, The Extrasolar Planets Encyclopaedia. http://exoplanet.eu/.

  57. B. A. Smith and R. J. Terrile, “A circumstellar disk around beta Pictoris,” Science 226, 1421–1424 (1984).

    Article  ADS  Google Scholar 

  58. D. Swade, S. Fleming, J. M. Jenkins, et al., “The TESS science data archive,” in Observatory Operations: Strategies, Processes, and Systems VII, Ed. by A. B. Peck and R. L. Seaman (SPIE, Bellingham, Wash., 2018), id. 1070415.

  59. R. Vanderspek, J. Doty, M. Fausnaugh, et al., TESS Instrument Handbook, Version 0.1 (2018). https://archive. s-tsci.edu/missions/tess/doc/TESS_Instrument_Handbook_v0.1.pdf.

  60. B. Y. Welsh, N. Craig, I. A. Crawford, and R. J. Price, “Beta Pic-like circumstellar disk gas surrounding HR 10 and HD 85905,” Astron. Astrophys. 338, 674–682 (1998).

    ADS  Google Scholar 

  61. B. Y. Welsh and S. Montgomery, “Circumstellar gas-disk variability around A-type stars: The detection of exocomets?,” Publ. Astron. Soc. Pac. 125, 759 (2013).

    Article  ADS  Google Scholar 

  62. B. Y. Welsh and S. L. Montgomery, “The appearance and disappearance of exocomet gas absorption,” Adv. Astron. 2015, 980323 (2015).

    Article  ADS  Google Scholar 

  63. B. Y. Welsh and S. L. Montgomery, “Further detections of exocomet absorbing gas around Southern hemisphere A-type stars with known debris discs,” Mon. Not. R. Astron. Soc. 474, 1515–1525 (2018).

    Article  ADS  Google Scholar 

  64. S. Zieba, K. Zwintz, M. A. Kenworthy, and G. M. Kennedy, “Transiting exocomets detected in broadband light by TESS in the beta Pictoris system,” Astron. Astrophys. 625, L13 (2019).

    Article  ADS  Google Scholar 

  65. B. Zuckerman and I. Song, “Myrold gaseous circumstellar disk at 49 Ceti: Massive CO-rich comet clouds at young A-type stars,” Astrophys. J. 758, 77 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed in the frames of the government funding program for institutions of the National Academy of Sciences of Ukraine (NASU) and partially supported by the 1230 System of the NASU Program (16.01.2020 No. 3/20) and the National Research Foundation of Ukraine (no. 2020.02/0228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. Pavlenko or O. Shubina.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, Y., Shubina, O., Kulyk, I. et al. Exocometary Activity Around Stars at Different Evolutionary Stages: Current Issues. Kinemat. Phys. Celest. Bodies 37, 64–74 (2021). https://doi.org/10.3103/S0884591321020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321020057

Navigation