Skip to main content
Log in

Development of an M6.4 Circular Solar Flare According to the Observations in the Нα Line

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The development of the 3N/M6.4 flare on July 19, 2000, in the active region NOAA 9087 was studied based on the analysis of its images in the Нα line. Нα filtergrams obtained at the Meudon Observatory were used. The flare-active region NOAA 9087 had a complex multipolar magnetic field structure. The flare of 3N/M6.4 class began with the appearance of two bright kernels near a large spot. A few minutes later, flare kernels appeared in the central part of the active region, where a coronal source of hard X-ray radiation was identified. The flare lasted 2.5 h. Its energy was released sequentially in different places of the active region. The flare kernels were located along the polarity inversion line at the boundaries of the chromospheric cells. The flare ribbons had a circular shape. An assumption is made about the magnetic topology of the fan-spine type containing a null point. In this case, flare ribbons are the intersections of the fan quasi-separatrix layer with the lower atmosphere. The successive appearance of flare kernels may indicate a slipping magnetic reconnection in the flare. The Нα images in the main phase of the flare show reconnecting loops in the eastern part of the active region that are clearly visible in the ultraviolet wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Aulanier, P. Demoulin, C. J. Schrijver, et al., “The standard flare model in three dimensions. II. Upper limit on solar flare energy,” Astron. Astrophys. 549, A66 (2013).

    Article  Google Scholar 

  2. G. Aulanier, L. Golub, E. E. DeLuca, et al., “Slipping magnetic reconnection in coronal loops,” Science 318, 1588–1591 (2007).

    Article  ADS  Google Scholar 

  3. G. Aulanier, M. Janvier, and B. Schmieder, “The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops,” Astron. Astrophys. 543, A110 (2012).

    Article  ADS  Google Scholar 

  4. G. Aulanier, E. Pariat, P. Demoulin, and C. R. DeVore, “Slip-running reconnection in quasi-separatrix layers,” Sol. Phys. 238, 347−376 (2006).

    Article  ADS  Google Scholar 

  5. R. Chandra, B. Schmieder, C. H. Mandrini, et al., “Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003,” Sol. Phys. 269, 83−104 (2011).

    Article  ADS  Google Scholar 

  6. S. N. Chornogor and N. N. Kondrashova, “Morphology of the flare-productive active region NOAA 9087,” Kinematics Phys. Celestial Bodies 36, 140–152 (2020).

    Article  ADS  Google Scholar 

  7. P. Demoulin, “Extending the concept of separatrices to QSLs for magnetic reconnection,” Adv. Space Res. 37, 1269−1282 (2006).

    Article  ADS  Google Scholar 

  8. P. Demoulin, L. G. Bagala, C. H. Mandrini, et al., “Quasi-separatrix layers in solar flares. II. Observed magnetic configurations,” Astron. Astrophys. 325, 305−317 (1997).

    ADS  Google Scholar 

  9. P. Demoulin, C. H. Mandrini, M. G. Rovira, et al., “Interpretation of multiwavelength observations of November 5, 1980 solar flares by the magnetic topology of AR 2766,” Sol. Phys. 150, 221−243 (1994).

    Article  ADS  Google Scholar 

  10. P. Demoulin, L. van Driel-Gesztelyi, B. Schmieder, et al., “Evidence for magnetic reconnection in solar flares,” Astron. Astrophys. 271, 292−307 (1993).

    ADS  Google Scholar 

  11. P. Devi, B. Joshi, R. Chandra, et al., “Development of a confined circular-cum-parallel ribbon flare and associated pre-flare activity,” Sol. Phys. 295, 75 (2020).

    Article  ADS  Google Scholar 

  12. J. Dudik, M. Janvier, G. Aulanier, et al., “Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA,” Astrophys. J. 784, 144 (2014).

    Article  ADS  Google Scholar 

  13. J. Dudík, V. Polito, M. Janvier, et al., “Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare,” Astrophys. J. 823, 41 (2016).

    Article  ADS  Google Scholar 

  14. J. Guo, H. Wang, J. Wang, et al., “The role of a magnetic topology skeleton in a solar active region,” Astrophys. J. 874, 181 (2019).

    Article  ADS  Google Scholar 

  15. A. Hernandez-Perez, J. K. Thalmann, A. Veronig, et al., “Generation mechanisms of quasi-parallel and quasi-circular flare ribbons in a confined flare,” Astrophys. J. 847, 124 (2017).

    Article  ADS  Google Scholar 

  16. Y. J. Hou, T. Li, and J. Zhang, “Flux rope proxies and fan-spine structures in active region NOAA 11897,” Astron. Astrophys. 592, A138 (2016).

    Article  ADS  Google Scholar 

  17. M. Janvier, “Three-dimensional magnetic reconnection and its application to solar flares,” J. Plasma Phys. 83, 535830101 (2017).

    Article  Google Scholar 

  18. M. Janvier, G. Aulanier, E. Pariat, and P. Demoulin, “The standard flare model in three dimensions. III. Slip-running reconnection properties,” Astron. Astrophys. 555, A77 (2013).

    Article  ADS  Google Scholar 

  19. J. Jing, R. Liu, M. C. M. Cheung, et al., “Witnessing a large-scale slipping magnetic reconnection along a dimming channel during a solar flare,” Astrophys. J., Lett. 842, L18 (2017).

    Article  ADS  Google Scholar 

  20. T. Kosugi, K. Makishima, T. Murakami, et al., “The Hard X-ray Telescope (HXT) for the SOLAR-A mission,” Sol. Phys. 136, 17−36 (1991).

    Article  ADS  Google Scholar 

  21. E. V. Kurochka and V. G. Lozitsky, “Magnetic fields and thermodynamical condirions in the M6.4/3N solar flare on July 19, 2000,” Kinematika Fiz. Nebesnykh Tel, Prilozh., No. 5, 143−145 (2005).

  22. H. Li, “Magnetic field configurations leading to solar eruptions,” in Proc. 1st Asia-Pacific Solar Physics Meeting, Bengaluru, India, Mar. 21–24, 2011, Ed. by A. R. Choudhuri and D. Banerjee (Astronomical Society of India, Bengaluru, 2011), in Ser.: ASI Conference Series, Vol. 2, pp. 291−296.

  23. T. Li, S. Yang, Q. Zhang, et al., “Two episodes of magnetic reconnections during a confined circular-ribbon flare,” Astrophys. J. 859, 122 (2018).

    Article  ADS  Google Scholar 

  24. T. Li and J. Zhang, “Slipping magnetic reconnection triggering a solar eruption of a triangle-shaped flag flux rope,” Astrophys. J., Lett. 791, L13 (2014).

    Article  ADS  Google Scholar 

  25. T. Li and J. Zhang, “Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph,” Astrophys. J., Lett. 804, L8 (2015).

    Article  ADS  Google Scholar 

  26. C. Liu, J. Lee, N. Deng, et al., “Large-scale activities associated with the 2003 October 29 X10 flare,” Astrophys. J. 642, 1205−1215 (2006).

    Article  ADS  Google Scholar 

  27. J. Lorincik, J. Dudik, and G. Aulanier, “Manifestations of three-dimensional magnetic reconnection in an eruption of a quiescent filament: Filament strands turning to flare loops,” Astrophys. J. 885, 83 (2019).

    Article  ADS  Google Scholar 

  28. V. Lozitsky and M. Stodilka, “Magnetic fields and thermodynamic conditions in the pre-peak phase of M6.4/3N solar flare,” Visn. Kiiv. Nats. Univ. im. T. Shevchenka, No. 59. 22−33 (2019).

    Google Scholar 

  29. M. L. Luoni, C. H. Mandrini, G. D. Cristiani, and P. Démoulin, “The magnetic field topology associated with two M flares,” Adv. Space Res. 39, 1382−1388 (2007).

    Article  ADS  Google Scholar 

  30. C. H. Mandrini, P. Demoulin, J. C. Henoux, and M. E. Machado, “Evidence for the interaction of large scale magnetic structures in solar flares,” Astron. Astrophys. 250, 541−547 (1991).

    ADS  Google Scholar 

  31. C. H. Mandrini, P. Demoulin, M. G. Rovira, et al., “Constraints on flare models set by the active region magnetic topology. Magnetic topology of AR 6233,” Astron. Astrophys. 303, 927−939 (1995).

    ADS  Google Scholar 

  32. S. Masson, E. Pariat, G. Aulanier, and C. J. Schrijver, “The nature of flare ribbons in coronal null-point topology,” Astrophys. J. 700, 559−578 (2009).

    Article  ADS  Google Scholar 

  33. S. Masson, E. Pariat, G. Valori, et al., “Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare,” Astron. Astrophys. 604, A76 (2017).

    Article  Google Scholar 

  34. Y. Ogawara, T. Takano, T. Kato, et al., “The Solar-A mission — An overview,” Sol. Phys. 136, 1−16 (1991).

    Article  ADS  Google Scholar 

  35. E. R. Priest and P. Démoulin, “Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping,” J. Geophys. Res.: Space Phys. 100, 23443−23464 (1995).

    Article  ADS  Google Scholar 

  36. E. R. Priest and T. G. Forbes, “The magnetic nature of solar flares,” Astron. Astrophys. Rev. 10, 313−377 (2002).

    Article  ADS  Google Scholar 

  37. E. R. Priest and V. S. Titov, “Magnetic reconnection at three-dimensional null points,” Philos. Trans.: Math., Phys. Eng. Sci. 354, 2951−2992 (1996).

  38. H. A. S. Reid, N. Vilmer, G. Aulanier, and E. Pariat, “X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare,” Astron. Astrophys. 547, A52 (2012).

    Article  ADS  Google Scholar 

  39. P. Romano, M. Falco, S. L. Guglielmino, and M. Murabito, “Observation of a 3D magnetic null point,” Astrophys. J. 837, 173 (2017).

    Article  ADS  Google Scholar 

  40. P. H. Scherrer, R. S. Bogart, R. I. Bush, et al., “The solar oscillations investigation — Michelson Doppler Imager,” Sol. Phys. 162, 129−188 (1995).

    Article  ADS  Google Scholar 

  41. Y. Shen, Z. Qu, C. Zhou, et al., “Round-trip slipping motion of the circular flare ribbon evidenced in a fan-spine jet,” Astrophys. J., Lett. 885, L11 (2019).

    Article  ADS  Google Scholar 

  42. M. Sobotka, J. Dudik, C. Denker, et al., “Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope,” Astron. Astrophys. 596, A1 (2016).

    Article  Google Scholar 

  43. X. Sun, J. T. Hoeksema, Y. Liu, et al., “Hot spine loops and the nature of a late-phase solar flare,” Astrophys. J. 778, 139 (2013).

    Article  ADS  Google Scholar 

  44. T. Török, G. Aulanier, B. Schmieder, et al., “Fan-spine topology formation through two-step reconnection driven by twisted flux emergence,” Astrophys. J. 704, 485−495 (2009).

    Article  ADS  Google Scholar 

  45. H. Wang and C. Liu, “Circular ribbon flares and homologous jets,” Astrophys. J. 760, 101 (2012).

    Article  ADS  Google Scholar 

  46. H. Wang, Y. Yan, T. Sakurai, and M. Zhang, “Topology of magnetic field and coronal heating in solar active regions — II. The role of quasi-separatrix layers,” Sol. Phys. 197, 263−273 (2000).

    Article  ADS  Google Scholar 

  47. Z. Xu, K. Yang, Y. Guo, et al., “Homologous flares driven by twisted flux emergence,” Astrophys. J. 851, 30 (2017).

    Article  ADS  Google Scholar 

  48. K. Yang, Y. Guo, and M. D. Ding, “On the 2012 October 23 circular ribbon flare: Emission features and magnetic topology,” Astrophys. J. 806, 171 (2015).

    Article  ADS  Google Scholar 

  49. R. Zheng, Y. Chen, and B. Wang, “Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare,” Astrophys. J. 823, 136 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the support teams of the Meudon and Learmonth telescopes, as well as the Yohkoh, GOES, BBSO, and SOHO/MDI telescopes for open access to the observational data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chornogor.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chornogor, S.N., Kondrashova, N.N. Development of an M6.4 Circular Solar Flare According to the Observations in the Нα Line. Kinemat. Phys. Celest. Bodies 37, 75–84 (2021). https://doi.org/10.3103/S0884591321020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321020021

Keywords:

Navigation