Skip to main content
Log in

Comprehensive Review of the Landfill Site Selection Methodologies and Criteria

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

This paper presents a comprehensive review of the methodological frameworks and criteria used for municipal solid waste landfill selection. The review is based on 89 scientific papers published in peer reviewed journals from 1983 onwards. The descriptive statistical analyses of the reviewed papers consider temporal, location-based quantitative, and qualitative factors. The papers considered are classified by the country where the case studies were carried out, and the qualitative ranking is performed according to the number of citations. Afterwards, the employed methods and criteria for landfill site selection were extensively analyzed and classified. The summary of the conducted analyses shows that Geographical Information Systems (GIS), either as an individual technique or in combination with other approaches are extensively used. Weighted linear combination is the most frequently applied multi-criteria decision analysis method for ranking of alternatives. The analytical hierarchy process is the dominating method for weighting the criteria. A combination of GIS with Remote Sensing techniques is used in several landfill siting studies as a more appealing approach, due to the capability of real-time data updates. The evaluations of the landfill siting criteria indicate that the most frequent main criterion is environmental, followed by economic and social criteria, while the most preferred sub-criteria is distance to the surface waters. These findings and classifications are beneficial to both, the researchers and decision makers, while serving as a support to the complex and difficult process of real-world landfill site selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Similar content being viewed by others

References

  1. Mahini AS, Gholamalifard M (2006) Siting MSW landfills with a weighted linear combination (WLC) methodology in a GIS environment. Int J Environ Sci Tech 3:435–445

    Google Scholar 

  2. Council EU (1999) Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off J Eur Commun 16/07/1999 182:1–19

    Google Scholar 

  3. Council EU (2003) Council decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills persuant to Article 16 of and Annex II to Directive 1999/31/EC. Off J Eur Commun 16.1.2003 11:27–49

    Google Scholar 

  4. Hostovsky C (2000) Integrating planning theory and waste management. An annotated bibliography. J Plan Lit 15:305–332

    Google Scholar 

  5. Barlaz M, Kaplan P, Ranjithan S, Rynk R (2003) Evaluating environmental impacts of solid waste management alternatives. Biocycle 44:52–56

    Google Scholar 

  6. Gorsevski PV, Donevska KR, Mitrovski CD, Frizado JP (2012) Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste Manag 32(2):287–296

    Google Scholar 

  7. McBean EA, Rovers FA, Farquhar GJ (1995) Solid waste landfill engineering and design. Prentice-Hall Publishing Co., Inc., Englewood Cliffs

    Google Scholar 

  8. Chang NB, Parvathinathan G, Breeden JB (2008) Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J Environ Manag 87(1):139–153

    Google Scholar 

  9. Nazari A, Salarirad MM, Bazzazi AA (2012) Landfill site selection by decision-making tools based on fuzzy multi-attribute decision-making method. Environ Earth Sci 65(6):1631–1642

    Google Scholar 

  10. Demesouka OE, Vavatsikos AP, Anagnostopoulos KP (2014) GIS-based multicriteria municipal solid waste landfill suitability analysis: a review of the methodologies performed and criteria implemented. Waste Manag Res 32(4):270–296

    CAS  Google Scholar 

  11. Mat NA, Benjamin AM, Abdul-Rahman S (2017) A review on criteria and decision-making techniques in solving landfill site selection problems. J Adv Rev Sci Res 37(1):14–32

    Google Scholar 

  12. Özkan B, Özceylan E, Sarıçiçek İ (2019) GIS-based MCDM modeling for landfill site suitability analysis: a comprehensive review of the literature. Environ Sci Pollut Res 26:1–20

    Google Scholar 

  13. Lin HY, Kao JJ (1998) A vector-based spatial model for landfill siting. J Hazard Mater 58(1–3):3–14

    CAS  Google Scholar 

  14. Siddiqui M, Everett JM, Vieux BE (1996) Landfill siting using geographic information systems: a demonstration. J Environ Eng 122:515–523

    CAS  Google Scholar 

  15. Noble G (1992) Siting landfills and other LULU’s. Technomic Publishing Company Inc, Lancaster

    Google Scholar 

  16. Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  17. Delgado OB, Mendoza M, Granados EL, Geneletti D (2008) Analysis of land suitability for the siting of inter-municipal landfills in the Cuitzeo Lake Basin, Mexico. Waste Manag 28(7):1137–1146

    Google Scholar 

  18. Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726

    Google Scholar 

  19. Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4(1):5–22

    Google Scholar 

  20. Donevska KR, Gorsevski PV, Jovanovski M, Peševski I (2012) Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ Earth Sci 67(1):121–131

    CAS  Google Scholar 

  21. Gemitzi A, Tsihrintzis VA, Voudrias E, Petalas C, Stavrodimos G (2007) Combining geographic information system, multi criteria evaluation techniques and fuzzy logic in siting MSW landfills. Environ Geol 51:797–811

    Google Scholar 

  22. Geneletti D (2010) Combining stakeholder analysis and spatial multicriteria evaluation to select and rank inert landfill sites. Waste Manag 30:328–337

    Google Scholar 

  23. Khamehchiyan M, Nikoudel MR, Boroumandi M (2011) Identification of hazardous waste landfill site: a case study from Zanjan province, Iran. Environ Earth Sci 64(7):1763–1776

    CAS  Google Scholar 

  24. Kontos TD, Komilis DP, Halvadakis CP (2005) Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Manag 25(8):818–832

    CAS  Google Scholar 

  25. Nas B, Cay T, Iscan F et al (2010) Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ Monit Assess 160:491. https://doi.org/10.1007/s10661-008-0713-8

    Article  Google Scholar 

  26. Şener B, Süzen ML, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49:376–388

    Google Scholar 

  27. Şener S, Şener E, Nas B, Karaguzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Manag 30:2037–2046

    Google Scholar 

  28. Sharifi M, Hadidi M, Vessali E, Mosstafakhani P, Taheri K, Shahoie S, Khodamoradpour M (2009) Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, Western Iran. Waste Manag 29:2740–2758

    Google Scholar 

  29. Zamorano M, Molero E, Hurtado A, Grindlay A, Ramos A (2008) Evaluation of a municipal landfill site in Southern Spain with GIS-aided methodology. J Hazard Mater 160:473–481

    CAS  Google Scholar 

  30. Jensen JR, Christensen EJ (1986) Solid and hazardous waste disposal site selection using digital geographic information system techniques. Sci Total Environ 56:265–276

    Google Scholar 

  31. Vatalis K, Manoliadis O (2002) A two-level multicriteria DSS for landfill site selection using GIS: case study in Western Macedonia, Greece. J Geogr Inf Decis Anal 6(1):49–56

    Google Scholar 

  32. Voogd H (1983) Multi-criteria evaluations for urban and regional planning. Pion, London

    Google Scholar 

  33. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  34. Al-Jarrah O, Abu-Qdais H (2006) Municipal solid waste landfill siting using intelligent system. Waste Manag 26:299–306

    Google Scholar 

  35. Gupta R, Kewalramaniz MA, Ralegaonkar RV (2003) Environmental impact analysis using fuzzy relation for landfill siting. J Urban Plan Dev 129:121–139

    Google Scholar 

  36. Şener Ş, Sener E, Karagüzel R (2011) Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent-Uluborlu (Isparta) Basin, Turkey. Environ Monit Assess 173(1–4):533–554

    Google Scholar 

  37. Guiqin W, Li Q, Guoxue L, Lijun C (2009) Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J Environ Manag 90(8):2414–2421

    Google Scholar 

  38. Saaty TL, Vargas LG (2006) Decision making with the analytic network process. Springer Science + Business Media Inc, New York

    Google Scholar 

  39. Afzali A, Sabri S, Rashid M, Samani JMV, Ludin ANM (2014) Inter-municipal landfill site selection using analytic network process. Water Resour Manag 28(8):2179–2194

    Google Scholar 

  40. Banar M, Kose BM, Ozkan A et al (2007) Choosing a municipal landfill site by analytic network process. Environ Geol 52:747–751

    Google Scholar 

  41. Hamzeh M, Ali Abbaspour R, Davalou R (2015) Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting. Environ Sci Pollut Res 22:12511–12524

    Google Scholar 

  42. Ferretti V (2011) A multicriteria spatial decision support system development for siting a landfill in the province of Torino (Italy). J Multi-Criteria Decis Anal 18(5–6):231–252

    Google Scholar 

  43. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Google Scholar 

  44. Beskese A, Demir HH, Ozcan HK et al (2015) Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environ Earth Sci 73:3513–3521

    Google Scholar 

  45. Hanine M, Boutkhoum O, Tikniouine A et al (2016) Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. Springerplus 5:501

    Google Scholar 

  46. Kharat MG, Kamble SJ, Raut RD, Kamble SS, Dhume SM (2016) Modeling landfill site selection using an integrated fuzzy MCDM approach. Model Earth Syst Environ 2(2):53

    Google Scholar 

  47. Torabi-Kaveh M, Babazadeh R, Mohammadi SD, Zaresefat M (2016) Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran. Waste Manag Res 34(5):438–448

    Google Scholar 

  48. Ekmekçioğlu M, Kaya T, Kahraman C (2010) Fuzzy multicriteria disposal method and site selection for municipal solid waste. Waste Manag 30(8–9):1729–1736

    Google Scholar 

  49. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 8:183–190

    Google Scholar 

  50. Gbanie SP, Tengbe PB, Momoh JS, Medo J, Kabba VTS (2013) Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): case study Bo, Southern Sierra Leone. Appl Geogr 36:3–12

    Google Scholar 

  51. Melo AL, Calijuri ML, Duarte IC, Azevedo RF, Lorentz JF (2006) Strategic decision analysis for selection of landfill sites. J Surv Eng 132(2):83–92

    Google Scholar 

  52. Motlagh ZK, Sayadi MH (2015) Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste Manag 46:322–337

    Google Scholar 

  53. Alexakis DD, Sarris A (2014) Integrated GIS and remote sensing analysis for landfill sitting in Western Crete Greece. Environ Earth Sci 72(2):467–482

    Google Scholar 

  54. Abd-El Monsef H, Smith SE (2019) Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arab J Geosci 12(5):1–14

    Google Scholar 

  55. Demesouka OE, Vavatsikos AP, Anagnostopoulos KP (2013) Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study. Waste Manag 33(5):1190–1206

    CAS  Google Scholar 

  56. Chau KW (2005) Prototype expert system for site selection of a sanitary landfill. Civil Eng Environ Syst 22:205–215

    Google Scholar 

  57. Demesouka OE, Vavatsikos AP, Anagnostopoulos KP (2016) Using MACBETH multicriteria technique for GIS-based landfill suitability analysis. J Environ Eng 142(10):1–11

    Google Scholar 

  58. Liu HC, You JX, Chen YZ, Fan XJ (2014) Site selection in municipal solid waste management with extended VIKOR method under fuzzy environment. Environ Earth Sci 72(10):4179–4189

    Google Scholar 

  59. Opricovic S (1998) Multi-criteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade

    Google Scholar 

  60. Santhosh LG, Sivakumar Babu GL (2018) Landfill site selection based on reliability concepts using the DRASTIC method and AHP integrated with GIS—a case study of Bengaluru city, India. Georisk: Assess Manag Risk Eng Syst Geohazards. https://doi.org/10.1080/17499518.2018.1434548

    Article  Google Scholar 

  61. Baban SM, Flannagan J (1998) Developing and implementing GIS-assisted constraints criteria for planning landfill sites in the UK. Plan Pract Res 13(2):139–151

    Google Scholar 

  62. De Feo G, De Gisi S (2014) Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal. Waste Manag 34(11):2225–2238

    Google Scholar 

  63. Eskandari M, Homaee M, Mahmodi S (2012) An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Manag 32(8):1528–1538

    Google Scholar 

  64. Kontos TD, Komilis DP, Halvadakis CP (2003) Siting MSW landfills on Lesvos Island with a GIS based methodology. Waste Manag Res 21(3):262–277

    Google Scholar 

  65. Moeinaddini M, Khorasani N, Danehkar A, Darvishsefat AA, Zienalyan M (2010) Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Manag 30:912–920

    Google Scholar 

  66. Vasiljević TZ, Srdjević Z, Bajčetić R, Miloradov MV (2012) GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environ Manag 49(2):445–458

    Google Scholar 

  67. Kao JJ, Chen WY, Lin HY, Guo SJ (1996) Network expert geographic information system for landfill siting. J Comput Civ Eng 10(4):307–317

    Google Scholar 

  68. Sumathi VR, Natesan U, Sarkar C (2008) GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag 28(11):2146–2160

    CAS  Google Scholar 

  69. Charnpratheep K, Zhou Q, Garner B (1997) Preliminary landfill site screening using fuzzy geographical information systems. Waste Manag Res 15(2):197–215

    CAS  Google Scholar 

  70. Spigolon LM, Giannotti M, Larocca AP, Russo MA, Souza NDC (2018) Landfill siting based on optimisation, multiple decision analysis, and geographic information system analyses. Waste Manag Res 36(7):606–615

    Google Scholar 

  71. Khan MMUH, Vaezi M, Kumar A (2018) Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment. Sci Total Environ 610:1065–1075

    Google Scholar 

  72. Wang Y, Li J, An D, Xi B, Tang J, Wang Y, Yang Y (2018) Site selection for municipal solid waste landfill considering environmental health risks. Resour Conserv Recycl 138:40–46

    Google Scholar 

  73. Balew A, Alemu M, Leul Y et al (2020) Suitable landfill site selection using GIS-based multi-criteria decision analysis and evaluation in Robe town, Ethiopia. GeoJ. https://doi.org/10.1007/s10708-020-10284-3

    Article  Google Scholar 

  74. Ali SA, Parvin F, Al-Ansari N et al (2020) Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11004-7

    Article  Google Scholar 

  75. Khan D, Samadder SR (2015) A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. J Environ Eng Landsc Manag 23(4):267–278

    Google Scholar 

  76. Kumar S, Hassan MI (2013) Selection of a landfill site for solid waste management: an application of AHP and spatial analyst tool. J Indian Soc Remote Sens 41:45–56

    Google Scholar 

  77. Alavi N, Goudarzi G, Babaei AA, Jaafarzadeh N, Hosseinzadeh M (2013) Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County Iran. Waste Manag Res 31(1):98–105

    Google Scholar 

  78. Bahrani S, Ebadi T, Ehsani H, Yousefi H, Maknoon R (2016) Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabestar, Iran. Environ Earth Sci 75(4):337

    Google Scholar 

  79. Eskandari M, Homaee M, Mahmoodi S et al (2015) Optimizing landfill site selection by using land classification maps. Environ Sci Pollut Res 22:7754–7765

    CAS  Google Scholar 

  80. Eskandari M, Homaee M, Falamaki A (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ Sci Pollut Res 23:12423–12434

    Google Scholar 

  81. Isalou AA, Zamani V, Shahmoradi B et al (2013) Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environ Earth Sci 68:1745–1755

    Google Scholar 

  82. Shahabi H, Keihanfard S, Ahmad BB, Amiri MJT (2014) Evaluating boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environ Earth Sci 71(9):4221–4233

    Google Scholar 

  83. Chabuk A, Al-Ansari N, Hussain HM, Knutsson S, Pusch R (2016) Landfill site selection using geographic information system and analytical hierarchy process: a case study Al-Hillah Qadhaa, Babylon, Iraq. Waste Manag Res 34(5):427–437

    Google Scholar 

  84. Chabuk AJ, Al-Ansari N, Hussain HM, Knutsson S, Pusch R (2017) GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ Earth Sci 76(5):209

    Google Scholar 

  85. Baiocchi V, Lelo K, Polettini A, Pomi R (2014) Land suitability for waste disposal in metropolitan areas. Waste Manag Res 32(8):707–716

    Google Scholar 

  86. Ahmad SZ, Ahamad MSS, Yusoff MS (2014) Spatial effect of new municipal solid waste landfill siting using different guidelines. Waste Manag Res 32(1):24–33

    CAS  Google Scholar 

  87. Kara C, Doratli N (2012) Application of GIS/AHP in siting sanitary landfill: a case study in Northern Cyprus. Waste Manag Res 30(9):966–980

    Google Scholar 

  88. El Baba M, Kayastha P, De Smedt F (2015) Landfill site selection using multi-criteria evaluation in the GIS interface: a case study from the Gaza Strip, Palestine. Arab J Geosci 8:7499–7513

    Google Scholar 

  89. Djokanović S, Abolmasov B, Jevremović D (2016) GIS application for landfill site selection: a case study in Pančevo, Serbia. Bull Eng Geol Environ 75:1273–1299

    Google Scholar 

  90. Lee S (2003) Evaluation of waste disposal site using the DRASTIC system in Southern Korea. Environ Geol 44:654–664

    CAS  Google Scholar 

  91. Chiueh PT, Lo SL, Chang CL (2008) A GIS-based system for allocating municipal solid waste incinerator compensatory fund. Waste Manag 28(12):2690–2701

    CAS  Google Scholar 

  92. Kao JJ, Lin HY (1996) Multifactor spatial analysis for landfill siting. J Environ Eng 122(10):902–908

    CAS  Google Scholar 

  93. Lin HY, Kao JJ (2005) Grid-based heuristic method for multifactor landfill siting. J Comput Civ Eng 19(4):369–376

    Google Scholar 

  94. Kamdar I, Ali S, Bennui A, Techato K, Jutidamrongphan W (2019) Municipal solid waste landfill siting using an integrated GIS-AHP approach: a case study from Songkhla, Thailand. Resour Conserv Recycl 149:220–235

    Google Scholar 

  95. Aydi A, Zairi M, Dhia HB (2013) Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment. Environ Earth Sci 68:1375–1389

    CAS  Google Scholar 

  96. Aksoy E, San BT (2019) Geographical information systems (GIS) and Multi-Criteria Decision Analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bull Eng Geol Environ 78:779–791

    Google Scholar 

  97. Ersoy H, Bulut F (2009) Spatial and multi-criteria decision analysis-based methodology for landfill site selection in growing urban regions. Waste Manag Res 27(5):489–500

    CAS  Google Scholar 

  98. Kahraman C, Cebi S, Onar SC, Oztaysi B (2018) A novel trapezoidal intuitionistic fuzzy information axiom approach: an application to multicriteria landfill site selection. Eng Appl Artif Intell 67:157–172

    Google Scholar 

  99. Simsek C, Kincal C, Gunduz O (2006) A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environ Geol 49:620–633

    Google Scholar 

  100. Uyan M (2014) MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environ Earth Sci 71:1629–1639

    Google Scholar 

  101. Yal GP, Akgün H (2013) Landfill site selection and landfill liner design for Ankara, Turkey. Environ Earth Sci 70(6):2729–2752

    Google Scholar 

  102. Yesilnacar MI, Süzen ML, Kaya BŞ, Doyuran V (2012) Municipal solid waste landfill site selection for the city of Şanliurfa-Turkey: an example using MCDA integrated with GIS. Int J Digit Earth 5(2):147–164

    Google Scholar 

  103. Yildirim V (2012) Application of raster-based GIS techniques in the siting of landfills in Trabzon Province, Turkey: a case study. Waste Manag Res 30(9):949–960

    Google Scholar 

  104. Al-Ruzouq R, Shanableh A, Omar M, Al-Khayyat G (2018) Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates. Environ Monit Assess 190(3):147

    Google Scholar 

  105. Lane WN, McDonald RR (1983) Land suitability analysis: landfill siting. J Urban Plan Dev 109(1):50–61

    Google Scholar 

  106. Lin HY, Kao JJ (1999) Enhanced spatial model for landfill siting analysis. J Environ Eng ASCE 125:845–851

    CAS  Google Scholar 

  107. Nascimento VF, Yesiller N, Clarke KC, Ometto JPHB, Andrade PR, Sobral AC (2017) Modeling the environmental susceptibility of landfill sites in California. GIScience Remote Sens 54(5):657–677

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the editor and reviewers for their valuable comments which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Donevska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donevska, K., Jovanovski, J. & Gligorova, L. Comprehensive Review of the Landfill Site Selection Methodologies and Criteria. J Indian Inst Sci 101, 509–521 (2021). https://doi.org/10.1007/s41745-021-00228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00228-2

Keywords

Navigation