Skip to main content
Log in

Immersion Effect on the Anaerobic Degradation and the Rheological Properties of Straw-Cattle Manure (SCM) at 440 L Batch Pilot Scale Reactor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effects of the solid bed immersion in the anaerobic digestion of straw-cattle manure (SCM) were studied using two batch reactors of 2 m of solid height and 440 L of total volume. The reactors were operated in parallel with total (R1_100%) and partial solid height immersion (R2_74%) and no liquid recirculation. Recovered methane yield was 31.1% higher in R1 than in R2, 33.7 and 23 Nm3 CH4 t−1SCM respectively. The volatile solids (VS) and fiber degradation was studied in layers distributed each 0.5 m of the initial solid bed height profile; VS removal was measured at 16% at 2 m height in contrast to 39.9% at the reactor bottom. VS removal was related with hemicellulose and cellulose biodegradation, maximal hemicellulose and cellulose degradation in the studied layers were 68.2 and 49.5% respectively. Physical and rheological changes of the solid phase were measured between the SCM and the digestate. Macropores volume was reduced from 30.4% to values between 0.82 and 5.57%, this decrease was related to the water content and the fiber degradation state in each layer. Similarly, yield stress values obtained with the slump test depends on total solids content and fiber degradation state, yield stress values ranged from 1.41 and 2.23 kPa for raw and digested SCM. Moreover, values of cohesion and the friction angle were between 1.5 and 2.8 kPa and 15.6 and 47.7° respectively. Physical and rheological properties of digested SCM depends on the solid degradation state and the water availability through the material’s height profile.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, L., Xu, F., Ge, X., Li, Y.: Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 44, 824–834 (2015). https://doi.org/10.1016/j.rser.2015.01.002

    Article  Google Scholar 

  2. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021

    Article  Google Scholar 

  3. Riggio, S., Torrijos, M., Debord, R., Esposito, G., van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manag. 59, 129–139 (2017). https://doi.org/10.1016/j.wasman.2016.10.027

    Article  Google Scholar 

  4. Degueurce, A., Capdeville, J., Perrot, C., Bioteau, T., Martinez, J.: Fumiers de bovins, une ressource à fort potentiel pour la filière de méthanisation en France. Sci. Eaux & Territoires. HS24, 1–9 (2016). https://doi.org/10.14758/set-revue.2016.HS.02

  5. Karthikeyan, O.P., Visvanathan, C.: Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev. Environ. Sci. Biotechnol. 12, 257–284 (2013). https://doi.org/10.1007/s11157-012-9304-9

    Article  Google Scholar 

  6. André, L., Pauss, A., Ribeiro, T.: Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.09.003

    Article  Google Scholar 

  7. Rocamora, I., Wagland, S.T., Villa, R., Simpson, E.W., Fernández, O., Bajón-Fernández, Y.: Dry anaerobic digestion of organic waste: a review of operational parameters and their impact on process performance. Bioresour. Technol. 299, 122681 (2020). https://doi.org/10.1016/j.biortech.2019.122681

    Article  Google Scholar 

  8. Chiumenti, A., da Borso, F., Limina, S.: Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: efficiency and comparison with wet fermentation. Waste Manag. 71, 704–710 (2017). https://doi.org/10.1016/j.wasman.2017.03.046

    Article  Google Scholar 

  9. Riggio, S., Torrijos, M., Vives, G., Esposito, G., van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors. Bioresour. Technol. 232, 93–102 (2017). https://doi.org/10.1016/j.biortech.2017.01.060

    Article  Google Scholar 

  10. Degueurce, A., Tomas, N., Le Roux, S., Martinez, J., Peu, P.: Biotic and abiotic roles of leachate recirculation in batch mode solid-state anaerobic digestion of cattle manure. Bioresour. Technol. 200, 388–395 (2016). https://doi.org/10.1016/j.biortech.2015.10.060

    Article  Google Scholar 

  11. André, L., Durante, M., Pauss, A., Lespinard, O., Ribeiro, T., Lamy, E.: Quantifying physical structure changes and non-uniform water flow in cattle manure during dry anaerobic digestion process at lab scale: implication for biogas production. Bioresour. Technol. 192, 660–669 (2015). https://doi.org/10.1016/j.biortech.2015.06.022

    Article  Google Scholar 

  12. Uke, M.N., Stentiford, E.: Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leach-bed reactors by varying flow direction during water addition and leachate recycle. Waste Manag. 33, 1425–1433 (2013). https://doi.org/10.1016/j.wasman.2013.02.020

    Article  Google Scholar 

  13. Degueurce, A., Clément, R., Moreau, S., Peu, P.: On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale. Waste Manag. 56, 125–136 (2016). https://doi.org/10.1016/j.wasman.2016.06.028

    Article  Google Scholar 

  14. Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J.-P., Steyer, J.-P., Escudié, R.: Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111, 55–61 (2012). https://doi.org/10.1016/j.biortech.2012.01.174

    Article  Google Scholar 

  15. André, L., Lamy, E., Lutz, P., Pernier, M., Lespinard, O., Pauss, A., Ribeiro, T.: Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor. Bioresour. Technol. 201, 89–96 (2015). https://doi.org/10.1016/j.biortech.2015.11.033

    Article  Google Scholar 

  16. Moreira, C., Castro, M., Gonsalez, A., Cavallari, F., Munhoz, T., Pereira, A.: Comparative analysis between biogas flow in landfill and electrical resistivity tomography in Rio Claro City, Brazil. J. Geol. Res. 2014, 1–7 (2014). https://doi.org/10.1155/2014/845906

    Article  Google Scholar 

  17. Benbelkacem, H., Bayard, R., Abdelhay, A., Zhang, Y., Gourdon, R.: Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. Bioresour. Technol. 101, 5206–5212 (2010). https://doi.org/10.1016/j.biortech.2010.02.049

    Article  Google Scholar 

  18. Meng, L., Maruo, K., Xie, L., Riya, S., Terada, A., Hosomi, M.: Comparison of leachate percolation and immersion using different inoculation strategies in thermophilic solid-state anaerobic digestion of pig urine and rice straw. Bioresour. Technol. 277, 216–220 (2019). https://doi.org/10.1016/j.biortech.2019.01.011

    Article  Google Scholar 

  19. André, L., Ndiaye, M., Pernier, M., Lespinard, O., Pauss, A., Lamy, E., Ribeiro, T.: Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: dynamic of methanogen populations. Bioresour. Technol. 207, 353–360 (2016). https://doi.org/10.1016/j.biortech.2016.02.033

    Article  Google Scholar 

  20. Patinvoh, R.J., Kalantar Mehrjerdi, A., Sárvári Horváth, I., Taherzadeh, M.J.: Dry fermentation of manure with straw in continuous plug flow reactor: reactor development and process stability at different loading rates. Bioresour. Technol. 224, 197–205 (2017). https://doi.org/10.1016/j.biortech.2016.11.011

    Article  Google Scholar 

  21. Peultier, P.: Dispositif pour la méthanisation par voie sèche de matière comprenant du fumier, EP3111739A1 (2016)

  22. Gong, H., Liu, M., Li, K., Li, C., Xu, G., Wang, K.: Optimizing dry anaerobic digestion at pilot scale for start-up strategy and long-term operation: Organic loading rate, temperature and co-digestion. Bioresour. Technol. 316, 2020 (2020). https://doi.org/10.1016/j.biortech.2020.123828

    Article  Google Scholar 

  23. Garcia-Bernet, D., Loisel, D., Guizard, G., Buffière, P., Steyer, J.P., Escudié, R.: Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests. Waste Manag. 31, 631–635 (2011). https://doi.org/10.1016/j.wasman.2010.12.013

    Article  Google Scholar 

  24. Fernandez, H.C., Ramirez, D.A., Franco, R.T., Buffière, P., Bayard, R.: Methods for the evaluation of industrial mechanical pretreatments before anaerobic digesters. Molecules 25, 1–14 (2020). https://doi.org/10.3390/molecules25040860

    Article  Google Scholar 

  25. Schneider, N., Gerber, M.: Rheological properties of digestate from agricultural biogas plants: an overview of measurement techniques and influencing factors. Renew. Sustain. Energy Rev. 121, 109709 (2020). https://doi.org/10.1016/j.rser.2020.109709

    Article  Google Scholar 

  26. Miccio, F., Barletta, D., Poletto, M.: Flow properties and arching behavior of biomass particulate solids. Powder Technol. 235, 312–321 (2013). https://doi.org/10.1016/j.powtec.2012.10.047

    Article  Google Scholar 

  27. Brambilla, M., Romano, E., Cutini, M., Pari, L., Bisaglia, C.: Rheological properties of manure/biomass mixtures and pumping strategies to improve ingestate formulation. Am. Soc. Agric. Biol. Eng. 56, 1905–1920 (2013)

    Google Scholar 

  28. Miryahyaei, S., Olinga, K., Abdul Muthalib, F.A., Das, T., Ab Aziz, M.S., Othman, M., Baudez, J.C., Batstone, D., Eshtiaghi, N.: Impact of rheological properties of substrate on anaerobic digestion and digestate dewaterability: new insights through rheological and physico-chemical interaction. Water Res. 150, 56–67 (2019). https://doi.org/10.1016/j.watres.2018.11.049

    Article  Google Scholar 

  29. Landry, H., Lague, C., Roberge, M.: Physical and rheological properties of manure products. Appl. Eng. Agric. 20, 277–288 (2004)

    Article  Google Scholar 

  30. Garcia-Bernet, D., Buffière, P., Latrille, E., Steyer, J.P., Escudié, R.: Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem. Eng. J. 172, 924–928 (2011). https://doi.org/10.1016/j.cej.2011.07.003

    Article  Google Scholar 

  31. Bernard, A., Peyras, L., Royet, P.: L’essai de cisaillement à la grande boîte de Casagrande: un banc expérimental pour évaluer les propriétés des sols grossiers et pour d’autres applications en géomécanique. Rev. Fr. Géotech. 146, 4 (2016). https://doi.org/10.1051/geotech/2016004

    Article  Google Scholar 

  32. Hernandez-Shek, M.A., Mathieux, M., André, L., Peultier, P., Pauss, A., Ribeiro, T.: Quantifying porosity changes in solid biomass waste using a disruptive approach of water retention curves (WRC) for dry anaerobic digestion. Bioresour. Technol. Rep. (2020). https://doi.org/10.1016/j.biteb.2020.100585

    Article  Google Scholar 

  33. APHA: Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC (2017)

    Google Scholar 

  34. van Soest, P.J.: Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Agric. Chem. 46, 825–835 (1963)

    Google Scholar 

  35. Baudez, J.C., Chabot, F., Coussot, P.: Rheological interpretation of the slump test. Appl. Rheol. 12, 133–141 (2002)

    Article  Google Scholar 

  36. Labuz, J.F., Zang, A., Section, A.Z., Hazard, S., Field, S., German, G.: Mohr-Coulomb Failure Criterion (2007). https://doi.org/10.1007/978-3-319-07713-0

  37. Casagrande, A.: Research on the Atterberg limits of soil. Public Roads 13, 121–136 (1932)

    Google Scholar 

  38. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.C., De Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F.R., Strömberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H., Wierinck, I.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016). https://doi.org/10.2166/wst.2016.336

    Article  Google Scholar 

  39. Riggio, S., Hernandéz-Shek, M.A., Torrijos, M., Vives, G., Esposito, G., Van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors. Bioresour. Technol. 234, 466–471 (2017). https://doi.org/10.1016/j.biortech.2017.02.056

    Article  Google Scholar 

  40. Shewani, A., Horgue, P., Pommier, S., Debenest, G., Lefebvre, X., Gandon, E., Paul, E.: Assessment of percolation through a solid leach bed in dry batch anaerobic digestion processes. Bioresour. Technol. 178, 209–216 (2015). https://doi.org/10.1016/j.biortech.2014.10.017

    Article  Google Scholar 

  41. Kusch, S., Oechsner, H., Jungbluth, T.: Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol. 99, 1280–1292 (2007). https://doi.org/10.1016/j.biortech.2007.02.008

    Article  Google Scholar 

  42. Schäfer, W., Lehto, M., Teye, F.: Dry anaerobic digestion of organic residues on-farm -a feasibility study. Agrifood Research Reports 77, Nordic Association of Agricultural Scientists, Jokioinen: MTT (Agrifood Research Finland), ISBN 952-487-006-1, 98 p (2006)

  43. Wesley Awe, O., Zhao, Y., Nzihou, A., Pham Minh, D., Lyczko, N.: A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz. 30, 267–283 (2017). https://doi.org/10.1007/s12649-016-9826-4ï

    Article  Google Scholar 

  44. Lee, J.I., Mather, A.E.: Solubility of hydrogen sulfide in water. Ber. Bunsen. Phys. Chem. 81, 1020–1023 (1977). https://doi.org/10.1002/bbpc.19770811029

    Article  Google Scholar 

  45. Stams, A.J.M., Plugge, C.M., de Bok, F.A.M., van Houten, B.H.G.W., Lens, P., Dijkman, H., Weijma, J.: Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci. Technol. 52, 13–20 (2005). https://doi.org/10.2166/wst.2005.0493

    Article  Google Scholar 

  46. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  47. Ghizzi Damasceno Da Silva, G.: Fractionnement par voie sèche de la biomasse lignocellulosique: Broyage poussé de la paille de blé et effects sur ses bioconversions. Thèse de doctorat. Supagro, Montpellier, France (2011)

  48. Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K.: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122 (2007). https://doi.org/10.1002/bit.21408

    Article  Google Scholar 

  49. Lemmer, A., Merkle, W., Baer, K., Graf, F.: Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield. Energy 138, 659–667 (2017). https://doi.org/10.1016/j.energy.2017.07.095

    Article  Google Scholar 

  50. Lague, C., Landry, H., Roberge, M.: Engineering of land application systems for livestock manure: a review. Can. Biosyst. Eng. 47, 617–628 (2005)

    Google Scholar 

  51. Ruys, V.: Rhéologie des résidus agricoles pour un procédé multi-étapes de méthanisation en voie sèche. Thèse de doctorat., Université de Grenobel Alpes, Grenoble, France (2017)

  52. Maglinao, A.L., Capareda, S.C., Nam, H.: Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: evaluation of synthesis gas production. Energy Convers. Manag. 105, 578–587 (2015). https://doi.org/10.1016/j.enconman.2015.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Association Nationale Recherche Technologie (ANRT) for the financial support of this work and for the Ph.D. grant of Manuel HERNANDEZ-SHEK (CIFRE n° 2017/0352). Special thanks to Pascal Chantepie, Vincent Hervé, Noemi Aubel and Christophe Vandaele for their technical assistance at the dairy farm “Ferme du bois” from UniLaSalle—Beauvais. A special thanks to Nicolas Honvault for his help in the statistical analysis with R commander. The authors want to thank Joseph Fayolle for his careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MAH-S: Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Visualization, Project administration, Writing—Original draft preparation, Writing—Review & Editing. LA: Investigation, Resources, Writing—Review & Editing. PP: Conceptualization, Supervision, Project administration, Funding acquisition. AP: Conceptualization, Methodology, Formal analysis, Supervision, Validation, Project administration, Funding acquisition, Validation, Writing—Review & Editing. TR: Conceptualization, Methodology, Supervision, Validation, Project administration, Funding acquisition, Writing—Reviewing and Editing.

Term

Definition

Conceptualization

Ideas; formulation or evolution of overarching research goals and aims

Methodology

Development or design of methodology; creation of models

Software

Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components

Validation

Verification, whether as a part of the activity or separate, of the overall replication/ reproducibility of results/experiments and other research outputs

Formal analysis

Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data

Investigation

Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection

Resources

Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools

Data curation

Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse

Writing—original draft

Preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation)

Writing—review & editing

Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision—including pre- or postpublication stages

Visualization

Preparation, creation and/or presentation of the published work, specifically visualization/data presentation

Supervision

Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team

Project administration

Management and coordination responsibility for the research activity planning and execution

Funding acquisition

Acquisition of the financial support for the project leading to this publication

Corresponding author

Correspondence to T. Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Shek, M.A., André, L., Peultier, P. et al. Immersion Effect on the Anaerobic Degradation and the Rheological Properties of Straw-Cattle Manure (SCM) at 440 L Batch Pilot Scale Reactor. Waste Biomass Valor 12, 6741–6758 (2021). https://doi.org/10.1007/s12649-021-01458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01458-2

Keywords

Navigation