Skip to main content
Log in

Analysis of the Variability of Stratospheric Gases Near St. Petersburg Using Ground-Based Spectroscopic Measurements

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Ozone anomalies that occur in the winter–spring period in the Northern Hemisphere have been increasingly observed in recent decades not only in the polar, but also in midlatitudes, including those near populous cities. A decrease in the stratospheric ozone content can lead to dangerous for humans levels of UV radiation; therefore, the study of processes associated with the variability of the content of stratospheric ozone is an urgent task for developing methods to predict the appearance of ozone miniholes and the growth of UV surface illumination. Using the example of measurements of solar IR radiation with a Bruker 125HR Fourier spectrometer in the vicinity of St. Petersburg, we demonstrate the capabilities of the ground-based spectroscopic method for studying and explaining the temporal variability of stratospheric trace gases involved in the cycles of the destruction and formation of the ozone layer. We have shown the importance of the temperature and dynamic state of the stratosphere for the formation of conditions for the chemical destruction of ozone, as well as the efficiency of using measurements of the total HF content as a dynamic tracer that makes it possible to identify periods of potential activation of the chemical mechanism of ozone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. L. Manney, M. L. Santee, M. Rex, et al., “Unprecedented Arctic ozone loss in 2011,” Nature 478, 469–475 (2011).

    Article  Google Scholar 

  2. D. S. Balis, “An update on the dynamically induced episodes of extreme low ozone values over the northern middle latitudes,” Int. J. Remote Sens. 32 (24), 9197–9205 (2011).

    Article  Google Scholar 

  3. N. E. Chubarova, “Characteristics of the bioactive erythema radiation regime,” in Ecological and Climatic Characteristics of the Atmosphere in 2011 from Data of the MSU Meteorological Observatory, Ed. by N. E. Chubarova (MAKS, Moscow, 2012) [in Russian].

    Google Scholar 

  4. N. E. Chubarova, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Polyakov, “Estimates of UV indices during the periods of reduced ozone content over Siberia in winter-spring 2016,” Atmos. Ocean. Opt, 32 (2), 177–179 (2019).

    Article  Google Scholar 

  5. G. L. Manney and Z. D. Lawrence, “The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss,” Atmos. Chem. Phys. 16, 15371–15396 (2016).

    Article  Google Scholar 

  6. F. Khosrawi, O. Kirner, B.-M. Sinnhuber, et al., “Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter,” Atmos. Chem. Phys. 17 (21), 12893–12910 (2017).

    Article  Google Scholar 

  7. Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project Report No. 58 (WMO, Geneva 2018).

  8. Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project Report No. 55 (WMO, Geneva, 2014).

  9. Ya. Virolainen, Yu. Timofeyev, A. Polyakov, et al., “Intercomparison of satellite and ground-based measurements of ozone, NO2, HF, and HCl near Saint Petersburg, Russia,” Int. J. Remote Sens. 35 (15), 5677–5697 (2014).

    Google Scholar 

  10. A. V. Polyakov, Yu. M. Timofeev, and A. V. Poberovskii," Ground-based measurements of total column of hydrogen chloride in the atmosphere near St. Petersburg," Izv., Atmos. Ocean. Phys. 49 (4), 411–419 (2013).

    Article  Google Scholar 

  11. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Poberovskii, “Ground-based measurements of HF total column abundances in the stratosphere near St. Petersburg (2009–2013),” Izv., Atmos. Ocean. Phys. 50 (6), 595–601 (2014).

    Article  Google Scholar 

  12. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, O. Kirner, and M. Hoepfner, “Chlorine nitrate in the atmosphere over St. Petersburg,” Izv., Atmos. Ocean. Phys. 51 (1), 49–56 (2015).

    Article  Google Scholar 

  13. “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation,” Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, O. Kirner, A. V. Poberovskii, and H. Kh. Imhasin, Izv., Atmos. Ocean. Phys. 52 (1), 57–65 (2016).

  14. Y. A. Virolainen, A. V. Polyakov, and O. Kirner, “Optimization of procedure for determining chlorine nitrate in the atmosphere from ground-based spectroscopic measurements,” J. Appl. Spectrosc. 87 (2), 319–325 (2020).

    Article  Google Scholar 

  15. D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  16. L. T. Molina and M. J. Molina, “Production of chlorine oxide (Cl2O2) from the self-reaction of the chlorine oxide (ClO) radical,” J. Phys. Chem. 91 (2), 433–436 (1987).

    Article  Google Scholar 

  17. S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37, 275–316 (1999).

    Article  Google Scholar 

  18. R. Mueller, T. Peter, P. J. Crutzen, et al., “The history of chlorine species and ozone depletion in the Arctic lower stratosphere in the EASOE winter 1991/92,” Geophys. Res. Lett. 21, 1427 (1994).

    Article  Google Scholar 

  19. R. Toumi, R. L. Jones, and J. A. Pyle, “Stratospheric ozone depletion by ClONO2 photolysis,” Nature 365, 37 (1993).

    Article  Google Scholar 

  20. S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the variability of gas and aerosol components in the stratosphere of polar regions,” Izv., Atmos. Ocean. Phys. 46 (3), 265–280 (2010).

    Article  Google Scholar 

  21. Yu. Timofeyev, Ya. Virolainen, M. Makarova, et al., “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016).

    Article  Google Scholar 

  22. F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).

    Article  Google Scholar 

  23. M. P. Chipperfield, M. Burton, W. Bell, et al., “On the use of HF as a reference for the comparison of stratospheric observations and models,” J. Geophys. Res. 102 (D11), 12901–12919 (1997).

    Article  Google Scholar 

  24. G. C. Toon, J.-F. Blavier, B. Sen, et al., “Ground-based observations of Arctic O3 loss during spring and summer 1997,” J. Geophys. Res. 104, 26497–26510 (1999).

    Article  Google Scholar 

  25. J. Mellqvist, B. Galle, T. Blumenstock, et al., “Ground-based FTIR observations of chlorine activation and ozone depletion inside the Arctic vortex during the winter of 1999/2000,” J. Geophys. Res. 107 (D20) 8263 (2002).

    Article  Google Scholar 

  26. T. Blumenstock, G. Kopp, F. Hase, et al., “Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/01,” Atmos. Chem. Phys. 6 (4), 897–905 (2006).

    Article  Google Scholar 

  27. T. Blumenstock, F. Hase, I. Kramer, et al., “Winter to winter variability of chlorine activation and ozone loss as observed by ground-based FTIR measurements at Kiruna since winter 1993/94,” Int. J. Remote Sens. 30, 4055–4064 (2009).

    Article  Google Scholar 

  28. E. Farahani, H. Fast, R. L. Mittermeier, et al., “Nitric acid measurements at Eureka obtained in winter 2001–2002 using solar and lunar Fourier transform infrared absorption spectroscopy: Comparisons with observations at Thule and Kiruna and with results from three-dimensional models,” J. Geophys. Res. 112 (D1), 1–10 (2007).

    Article  Google Scholar 

  29. G. Kopp, H. Berg, T. Blumenstock, et al., “Evolution of ozone and ozone-related species over Kiruna during the SOLVE/THESEO 2000 campaign retrieved from ground-based millimeter-wave and infrared observations,” J. Geophys. Res. 108 (D5), 8308 (2003).

    Article  Google Scholar 

  30. E. R. Nash, P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, “An objective determination of the polar vortex using Ertel’s potential vorticity,” J. Geophys. Res. 101 (D5), 9471–9478 (1996).

    Article  Google Scholar 

  31. A. M. Zvyagintsev, N. S. Ivanova, M. P. Nikiforova, I. N. Kuznetsova, and P. N. Vargin, “Ozone content over the Russian Federation in the first quarter of 2016,” Russ. Meteorol. Hydrol. 41 (5), 373–378 (2016).

    Article  Google Scholar 

  32. Y. M. Timofeyev, S. P. Smyshlyaev, Y. A. Virolainen, et al., “Case study of ozone anomalies over northern Russia in the 2015/2016 winter: Measurements and numerical modeling,” Ann. Geophys. 36 (6), 1495–1505 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectroscopic measurements were carried out on equipment of the Geomodel resource center of St. Petersburg State University.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-05-00426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Polyakov, A.V. & Timofeyev, Y.M. Analysis of the Variability of Stratospheric Gases Near St. Petersburg Using Ground-Based Spectroscopic Measurements. Izv. Atmos. Ocean. Phys. 57, 148–158 (2021). https://doi.org/10.1134/S0001433821010138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821010138

Keywords:

Navigation