Skip to main content
Log in

Estimation of Radiative Forcing from Snow Darkening with Black Carbon Using Climate Model Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Using a balance model of the snow layer, we estimate the concentration of black carbon (BC) in the snow; then, with the help of radiative transfer model SNICAR, we calculate the snow albedo and radiative forcing (RF) from snow darkening with BC. Data from an ensemble simulation with INMCM5, the 5th version of the climate model of Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences for the period 1998–2002 are used as input, which include snow both on land and on sea ice. The regionally averaged results are compared with other model data and field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. G. Flanner, C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, “Springtime warming and reduced snow cover from carbonaceous particles,” Atmos. Chem. Phys. 9, 2481–2497 (2009).

    Article  Google Scholar 

  2. K. M. Keegan, M. R. Albert, J. R. McConnell, and I. Baker, “Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet,” Proc. Natl. Acad. Sci. USA 111, 7964–7967 (2014).

    Article  Google Scholar 

  3. C. Dang, S. G. Warren, Q. Fu, S. J. Doherty, M. Sturm, and J. Su, “Measurements of light-absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo,” J. Geophys. Res. 122, 10149–10168 (2017).

    Article  Google Scholar 

  4. M. G. Flanner, C. S. Zender, J. T. Randerson, and P. J. Rasch, “Present-day climate forcing and response from black carbon in snow,” J. Geophys. Res. 112, D11202 (2007).

    Article  Google Scholar 

  5. C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang, “An AeroCom assessment of black carbon in Arctic snow and sea ice,” Atmos. Chem. Phys. 14, 2399–2417 (2014).

    Article  Google Scholar 

  6. C. Textor, M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, I. Iversen, S. Kloster, D. Koch, A. Kirkevåg, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, T. Takemura, and X. Tie, “Analysis and quantification of the diversities of aerosol life cycles within AeroCom,” Atmos. Chem. Phys. 6, 1777–1813 (2006).

    Article  Google Scholar 

  7. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Yakovlev, “Simulation of the present-day climate with the climate model INMC-M5,” Clim. Dyn. 49, 3715–3734 (2017).

    Article  Google Scholar 

  8. H. Conway, A. Gades, and C. F. Raymond, “Albedo of dirty snow during conditions of melt,” Water Resour. Res. 32, 1713–1718 (1996).

    Article  Google Scholar 

  9. E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41 (8), 519–528 (2016).

    Article  Google Scholar 

  10. R. M. Hoesly, S. J. Smith, L. Feng, Z. Klimont, G. Janssens-Maenhout, T. Pitkanen, J. J. Seibert, L. Vu, R. J. Andres, R. M. Bolt, T. C. Bond, L. Dawidowski, N. Kholod, J.-I. Kurokawa, M. Li, L. Liu, Z. Lu, M. C. P. Moura, P. R. O’Rourke, and Q. Zhang, “Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS),” Geosci. Model Dev. 11, 369–408 (2018).

    Article  Google Scholar 

  11. M. J. E. van Marle, S. Kloster, B. I. Magi, J. R. Marlon, A.-L. Daniau, R. D. Field, A. Arneth, M. Forrest, S. Hantson, N. M. Kehrwald, W. Knorr, G. Lasslop, F. Li, S. Mangeon, C. Yue, J. W. Kaiser, and G. R. van der Werf, “Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015),” Geosci. Model Dev. 10, 3329–3357 (2017).

    Article  Google Scholar 

  12. S. M. Skiles, M. G. Flanner, J. M. Cook, M. Dumont, and T. H. Painter, “Radiative forcing by light-absorbing particles in snow,” Nat. Clim. Change 8, 964–971 (2018).

    Article  Google Scholar 

Download references

Funding

This work was carried out at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, with support from the Russian Foundation for Basic Research, grant no. 18-05-61083 (assessment of RF from BC in snow), and the Russian Science Foundation, grant no. 20-17-00190 (carrying out numerical experiments with the INMCM5 model).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Chernenkov or S. V. Kostrykin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernenkov, A.Y., Kostrykin, S.V. Estimation of Radiative Forcing from Snow Darkening with Black Carbon Using Climate Model Data. Izv. Atmos. Ocean. Phys. 57, 133–141 (2021). https://doi.org/10.1134/S0001433821020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821020031

Keywords:

Navigation