Skip to main content
Log in

On the Role of the Explosive Interaction of Three Surface Waves at the Initial Stage of Spray Generation in Strong Winds

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This work is devoted to a theoretical study of the hydrodynamic instability of the water–air interface. The development of this instability may result in “bag-breakup” fragmentation, which is one of the main sources of droplets in hurricane winds. A hypothesis according to which the initial water surface elevations subjected to fragmentation are formed by the hydrodynamic instability of disturbances of the wind drift current in the water is proposed. The weakly nonlinear stage of instability in the form of a resonant three-wave interaction is considered. It is found that the nonlinear resonant interaction of a triad of wind drift perturbations, one wave of which is directed along the flow and two other waves are directed at an angle to the flow, leads to an explosive increase in amplitudes. As part of the piecewise continuous model of the drift current profile, the characteristic time and spatial scales of disturbances are found and it is shown that their characteristic dependences on the air friction velocity agree with previously obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. F. Veron, “Ocean spray,” Annu. Rev. Fluid Mech. 47 (1), 507–538 (2015).

    Article  Google Scholar 

  2. E. L. Andreas, “A review of the sea spray generation function for the open ocean,” Atmos. Interact. 1, 1–46 (2002).

    Google Scholar 

  3. Y. Troitskaya, A. Kandaurov, O. Ermakova, D. Kozlov, D. Sergeev, and S. Zilitinkevich, “Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds,” Sci. Rep. 7 (1), 1–4 (2017).

    Article  Google Scholar 

  4. Y. Troitskaya, A. Kandaurov, O. Ermakova, D. Kozlov, D. Sergeev, and S. Zilitinkevich, “The ‘bag breakup’ spume droplet generation mechanism at high winds. Part I: Spray generation function,” J. Phys. Oceanogr. 48 (9), 2168–2188 (2018).

    Google Scholar 

  5. Y. Troitskaya, O. Druzhinin, D. Kozlov, and S. Zilitinkevich, “The ‘Bag Breakup’ Spume droplet generation mechanism at high winds. Part II: Contribution to momentum and enthalpy transfer,” J. Phys. Oceanogr. 48 (9), 2189–2207 (2018).

    Article  Google Scholar 

  6. Y. Toba and M. Koga, “A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress,” in Oceanic Whitecaps, Ed. by E. C. Monahan and G. MacNiocaill, D. Reidel, 37–47 (1986).

    Google Scholar 

  7. B. E. Gelfand, “Droplet breakup phenomena in flows with velocity lag,” Prog. Energy Combust. Sci. 22 (3), 201–265 (1996).

    Article  Google Scholar 

  8. P. H. Marmottant and E. Villermaux, “On spray formation,” J. Fluid Mech. 498, 73–111 (2004).

    Article  Google Scholar 

  9. E. Villermaux, “Fragmentation,” Annu. Rev. Fluid Mech. 39, 419–446 (2007).

    Article  Google Scholar 

  10. E. Villermaux and B. Bossa, “Single-drop fragmentation determines size distribution of raindrops,” Nat. Phys. 5 (9), 697–702 (2009).

    Article  Google Scholar 

  11. Yu. I. Troitskaya, O. S. Ermakova, A. A. Kandaurov, D. S. Kozlov, D. A. Sergeev, and S. S. Zilitinkevich, “Fragmentation of the “bag-breakup” type as a mechanism of the generation of sea spray at strong and hurricane winds," Dokl. Earth Sci. 477, 1330–1335 (2017)

    Article  Google Scholar 

  12. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  13. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981; Mir, Moscow, 1987).

  14. D. I. Trubetskov and N. M. Ryskin, Nonlinear Waves (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  15. A. D. D. Craik, Wave Interactions and Fluid Flows (Cambridge University Press, 1986).

    Book  Google Scholar 

  16. A. D. D. Craik, “Resonant gravity-wave interactions in a shear flow,” J. Fluid Mech. 34 (3), 531–549 (1968).

    Article  Google Scholar 

  17. A. D. D. Craik, “Non-linear resonant instability in boundary layers,” J. Fluid Mech. 50 (2), 393–413 (1971).

    Article  Google Scholar 

  18. N. N. Romanova and V. I. Shrira, “Explosive generation of surface waves by wind,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 24 (7), 528–535 (1988).

    Google Scholar 

  19. L. A. Ostrovskii, S. A. Rybak, and L. Sh. Tsirming, “Negative energy waves in hydrodynamics,” Sov. Phys. Usp. 29 (11), 1040–1052 (1986).

    Article  Google Scholar 

  20. J. O. Hinze, Turbulence (McGraw-Hill, New York, 1975).

    Google Scholar 

  21. A. G. Voronovich, E. V. Lobanov, and S. A. Rybak, “Stability of gravitational capillary waves in the presence of a vertically inhomogeneous flow,” Izv. Akad. Nauk, Atmos. Oceanic Phys., No. 16, 329–331 (1980).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-35-90053 and 19-05-00249. The analytic calculations were supported by the Russian Science Foundation, project no. 19-17-00209, and a grant of the BASIS Theoretical Physics and Mathematics Advancement Foundation. The numerical solution of the resulting system was carried out under the support of the Ministry of Education and Science within the scope of Agreement no. 075-15-2020-776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kozlov.

Additional information

Translated by A. Nikol’skii

APPENDIX

APPENDIX

Let us consider the situation when the quantity Rew is finite. Then, at \(z = 0\), the boundary condition of zero shear stress must be satisfied:

$${{\left. {{{\partial }_{z}}u + ikw} \right|}_{{z = 0}}} = 0.$$
(A1)

It follows from the fluid incompressibility condition that

$$u = {{i{{\partial }_{z}}w} \mathord{\left/ {\vphantom {{i{{\partial }_{z}}w} k}} \right. \kern-0em} k}.$$
(A2)

We represent the vertical velocity perturbation in the form

$$w = {{w}_{{{\text{low}}}}}{{{\text{e}}}^{{kz}}} + {{w}_{{{\text{upp}}}}}{{{\text{e}}}^{{{z \mathord{\left/ {\vphantom {z {{{{{\delta }}}_{{\text{1}}}}}}} \right. \kern-0em} {{{{{\delta }}}_{{\text{1}}}}}}}}},$$
(A3)

where \({{\delta }_{1}} \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{w}}}}} }}} \right. \kern-0em} {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{w}}}}} }}\) is the characteristic scale of variation of the viscous addition.

Combining (A1)–(A3), we obtain an estimate for \({{w}_{{{\text{upp}}}}}\)

$${{w}_{{{\text{upp}}}}} \propto \frac{{{{w}_{{{\text{low}}}}}}}{{{\text{R}}{{{\text{e}}}_{{\text{w}}}}}}.$$
(A4)

At the boundary \(z = - 1\), the no-slip condition and the equality of shear stresses must be satisfied:

$${{\left. {{{u}_{1}}} \right|}_{{z = - 1}}} = {{\left. {{{u}_{2}}} \right|}_{{z = - 1}}},$$
(A5.1)
$$\frac{1}{{{\text{R}}{{{\text{e}}}_{{\text{w}}}}}}{{\left. {({{\partial }_{z}}{{u}_{1}} + ik{{w}_{1}})} \right|}_{{z = - 1}}} = \frac{1}{{{\text{R}}{{{\text{e}}}_{{\text{t}}}}}}{{\left. {({{\partial }_{z}}{{u}_{2}} + ik{{w}_{2}})} \right|}_{{z = - 1}}},$$
(A5.2)

where subscripts 1 and 2 correspond to the upper and lower regions. We again represent the velocity in the form

$$\begin{gathered} {{w}_{1}} = {{w}_{{{\text{1low}}}}}{{{\text{e}}}^{{k(z + 1)}}} + {{w}_{{{\text{1upp}}}}}{{{\text{e}}}^{{{{(z + 1)} \mathord{\left/ {\vphantom {{(z + 1)} {{{{{\delta }}}_{{\text{1}}}}}}} \right. \kern-0em} {{{{{\delta }}}_{{\text{1}}}}}}}}}, \\ {{u}_{1}} = {{u}_{{{\text{1low}}}}}{{{\text{e}}}^{{k(z + 1)}}} + {{u}_{{{\text{1upp}}}}}{{{\text{e}}}^{{{{(z + 1)} \mathord{\left/ {\vphantom {{(z + 1)} {{{{{\delta }}}_{{\text{1}}}}}}} \right. \kern-0em} {{{{{\delta }}}_{{\text{1}}}}}}}}}, \\ {{w}_{2}} = {{w}_{{{\text{2low}}}}}{{{\text{e}}}^{{k(z + 1)}}} + {{w}_{{{\text{2upp}}}}}{{{\text{e}}}^{{{{(z + 1)} \mathord{\left/ {\vphantom {{(z + 1)} 2}} \right. \kern-0em} 2}}}}, \\ {{u}_{2}} = {{u}_{{{\text{2low}}}}}{{{\text{e}}}^{{k(z + 1)}}} + {{u}_{{{\text{2upp}}}}}{{{\text{e}}}^{{{{(z + 1)} \mathord{\left/ {\vphantom {{(z + 1)} {{{{{\delta }}}_{{\text{2}}}}}}} \right. \kern-0em} {{{{{\delta }}}_{{\text{2}}}}}}}}}, \\ \end{gathered} $$
(A6)

where \({{\delta }_{1}} \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{w}}}}} }}} \right. \kern-0em} {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{w}}}}} }}\) and \({{\delta }_{2}} \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{t}}}}} }}} \right. \kern-0em} {\sqrt {{\text{R}}{{{\text{e}}}_{{\text{t}}}}} }}.\)

At \({\text{R}}{{{\text{e}}}_{w}} \gg {\text{R}}{{{\text{e}}}_{t}} \gg 1\), it follows that

$${{w}_{{{\text{1low}}}}}\sim {{w}_{{{\text{2low}}}}}\sim {{u}_{{{\text{1low}}}}}\sim {{u}_{{{\text{2low}}}}}.$$
(A7)

Let us send \({\text{R}}{{{\text{e}}}_{{\text{w}}}} \to \infty ;\) then, from (A5.2), we obtain that \({{\left. {{{\partial }_{z}}{{u}_{2}} + ik{{w}_{2}}} \right|}_{{z = - 1}}} = 0.\) Whence, with allowance for (A2) and (A6), we find that

$${{w}_{{{\text{2low}}}}}\sim {\text{R}}{{{\text{e}}}_{{\text{t}}}}{{w}_{{{\text{2upp}}}}}.$$
(A8)

From (A5.1) and with allowance for (A2), we obtain the estimate

$${{w}_{{{\text{2low}}}}}\sim \sqrt {{\text{R}}{{{\text{e}}}_{{\text{w}}}}} {{w}_{{{\text{1upp}}}}}.$$
(A9)

Viscosity in the upper layer at \(z = - 1\) may not be taken into account only if the shear stress in the lower layer is much more than the stress in the upper layer. To test the condition, it is sufficient to prove the smallness of \({{\left( {\frac{{{{\partial }_{z}}{{u}_{1}}}}{{{\text{R}}{{{\text{e}}}_{{\text{w}}}}}}} \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{{{\partial }_{z}}{{u}_{1}}}}{{{\text{R}}{{{\text{e}}}_{{\text{w}}}}}}} \right)} {\left( {\frac{{{{w}_{2}}}}{{{\text{R}}{{{\text{e}}}_{{\text{t}}}}}}} \right)}}} \right. \kern-0em} {\left( {\frac{{{{w}_{2}}}}{{{\text{R}}{{{\text{e}}}_{{\text{t}}}}}}} \right)}}.\) Indeed, with allowance for (A6)–(A9), we have

Thus, at \({\text{R}}{{{\text{e}}}_{w}} \gg {\text{Re}}_{t}^{2} \gg 1\), the fluid in the upper layer \( - 1 \leqslant z \leqslant 0\) can be considered nonviscous everywhere but in the critical layer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, D.S., Troitskaya, Y.I. On the Role of the Explosive Interaction of Three Surface Waves at the Initial Stage of Spray Generation in Strong Winds. Izv. Atmos. Ocean. Phys. 57, 180–191 (2021). https://doi.org/10.1134/S0001433821020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821020080

Keywords:

Navigation