Skip to main content
Log in

Variability of the North Atlantic Thermohaline Circulation in Different Phases of the Atlantic Multidecadal Oscillation from Ocean Objective Analyses and Reanalyses

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Zonally averaged characteristics of the North Atlantic (NA) thermohaline circulation are investigated in different phases of the Atlantic Multidecadal Oscillation (AMO) index over the past 70 years using ocean objective analyses EN4 and WOA13 and reanalyses GFDL, ESTOC, ORA-S4, and GECCO2. It is shown that similar thermohaline patterns appear in zonally averaged climatic trends and in differences in the composites of anomalies of the potential temperature and salinity fields for all data sets. To find out how the variability in the thermohaline state of waters in the NA is accompanied by the variability in its thermohaline circulation, we have analyzed the variability of the Atlantic Meridional Overturning Circulation (AMOC) stream function. The average AMOC stream functions calculated from ocean objective analyses and reanalyses, reflecting the NA thermohaline circulation, are generally similar to each other. Nonetheless, they can be divided according to their spatial structure into two groups: (EN4, WOA13, and GFDL) and (ESTOC, ORAS4, and GECCO2). In their trends and anomaly composite differences, the AMOC stream functions differ significantly among themselves, as well as from EN4 and WOA13. Moreover, the main distinction is in the sign of climatic trends and composite differences, which determines changes in the direction of the zonally averaged thermohaline circulation. It is found that positive and negative temperature (salinity) anomalies in alternating successive phases of the AMO index circulate with a period of roughly 60 years along the pathway of water in the AMOC, sinking into deep ocean layers at about 60° N and rising toward the surface at 25° N. This process is most pronounced for the EN4 and WOA13 objective analyses and ORAS4 reanalysis. It can be assumed that this mechanism contributes substantially to the formation of the AMO index phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Note that the start and end dates of the winter (January, February, and March) and summer (July, August, and September) periods are usually shifted one month ahead of the calendar dates.

REFERENCES

  1. M. E. Schlesinger and N. Ramankutty, “An oscillation in the global climate system of period 65–70 years,” Nature 367, 723–726 (1994).

    Article  Google Scholar 

  2. R. A. Kerr, “A North Atlantic climate pacemaker for the centuries,” Science 288, 1984–1985 (2000).

    Article  Google Scholar 

  3. D. B. Enfield, A. M. Mestas-Nuñez, and P. J. Trimble, “The Atlantic multidecadal oscillation and its relation to rainfall river flows in the continental U.S,” Geophys. Res. Lett. 28 (10), 2077–2080 (2001). https://psl.noaa. gov/data/timeseries/AMO/.

    Article  Google Scholar 

  4. V. Gouretski and F. Reseghetti, “On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database,” Deep-Sea Research I 57, 812–834 (2010). https://www.metoffice.gov.uk/hadobs/en4/.

    Article  Google Scholar 

  5. J. R. Knight, C. K. Folland, and A. A. Scaife, “Climate impacts of the Atlantic multidecadal oscillation,” Geophys. Res. Lett. 33, L17706 (2006).

    Article  Google Scholar 

  6. G. N. Panin, N. A. Dianskii, I. V. Solomonova, A. V. Gusev, and T. Yu. Vyruchalkina, “Assessment of climate changes in the Arctic in the 21st century using a combined prognostic scenario,” Arkt.: Ekol. Ekon. 2 (26), 35–52 (2017).

    Google Scholar 

  7. G. N. Panin and N. A. Diansky, “On the correlation between oscillations of the Caspian Sea level and the North Atlantic climate,” Izv., Atmos. Ocean. Phys., 50 (3), 266–277 (2014).

    Article  Google Scholar 

  8. A. Timmermann, M. Latif, R. Voss, and A. Grotzner, “Northern hemispheric interdecadal variability: A coupled air–sea mode,” J. Clim. 11, 1906–1931 (1998).

    Article  Google Scholar 

  9. J. Knight, R. Allan, C. Folland, et al., “A signature of persistent natural thermohaline circulation cycles in observed climate,” Geophys. Res. Lett. 32, L20708 (2005).

    Article  Google Scholar 

  10. A. B. Polonsky, “Interdecadal variability in the ocean–atmosphere system,” Russ. Meteorol. Hydrol., No. 5, 37–44 (1998).

  11. A. B. Polonskii, “Atlantic multidecadal oscillation and its manifestations in the Atlantic–European region,” Phys. Oceanogr. 18 (4), 227–236 (2008).

    Article  Google Scholar 

  12. E. N. Voskresenskaya and A. B. Polonskii, “Low-frequency variability of hydrometeorological fields and heat fluxes over the North Atlantic,” Phys. Oceanogr. 14 (4), 203–220 (2004).

    Google Scholar 

  13. R. G. Williams, V. Roussenov, D. Smith, and M. S. Lozier, “Decadal evolution of ocean thermal anomalies in the North Atlantic: The effects of Ekman, overturning, and horizontal transport,” J. Clim. 27, 698–719 (2014).

    Article  Google Scholar 

  14. C. Wang, S. Dong, and E. Muñoz, “Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation,” Clim. Dyn. 34, 953–968 (2010).

    Article  Google Scholar 

  15. E. M. Volodin, “The nature of 60-year oscillations of the Arctic climate according to the data of the INM RAS climate model,” Russ. J. Numer. Anal. Math. Modell. 33 (6), 1–9 (2018).

    Article  Google Scholar 

  16. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, et al., “Simulation of modern climate with the new version of the INM RAS climate model,” Izv., Atmos. Ocean. Phys. 53 (2), 142–155 (2017).

    Article  Google Scholar 

  17. L. M. Frankcombe and H. A. Dijkstra, “The role of Atlantic–Arctic exchange in North Atlantic multidecadal climate variability,” Geophys. Res. Lett. 38 (16), L16603 (2011).

    Article  Google Scholar 

  18. E. M. Volodin, “The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4,” Environ. Res. Lett. 8 (3), 035038 (2013).

    Article  Google Scholar 

  19. T. Delworth, S. Manabe, and R. J. Stouffer, “Interdecadal variations of the thermohaline circulation in a coupled atmosphere–ocean model,” J. Clim. 6, 1993–2011 (1993).

    Article  Google Scholar 

  20. N. A. Diansky and V. A. Bagatinsky, “Thermohaline structure of waters in the North Atlantic in different phases of the Atlantic multidecadal oscillation,” Izv., Atmos. Ocean. 55 (6), 628–639 (2019).

    Google Scholar 

  21. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2013, Vol. 1: Temperature, Ed. by S. Levitus, NOAA Atlas NESDIS (Silver Spring, Md., 2013), Vol. 73, pp. 1–40.

  22. M. M. Zweng, J. R. Reagan, J. I. Antonov, et al., World Ocean Atlas 2013, Vol. 2: Salinity, Ed. by S. Levitus, NOAA Atlas NESDIS (Silver Spring, Md., 2013), Vol. 74, pp. 1–39.

  23. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

  24. L. Caesar, S. Rahmstorf, A. Robinson, et al., “Observed fingerprint of a weakening Atlantic Ocean overturning circulation,” Nature 556, 191–196 (2018).

    Article  Google Scholar 

  25. N. A. Dianskii, Ocean Circulation Modeling and Study of Its Response to Short-Period and Long-Period Atmospheric Impacts (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  26. S. Zhang, M. J. Harrison, A. Rosati, and A. T. Wittenberg, “System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies,” Mon. Weather. Rev. 135 (10), 3541–3564 (2007).

    Article  Google Scholar 

  27. S. Osafune, S. Masuda, N. Sugiura, and T. Doi, “Evaluation of the applicability of the Estimated State of the Global Ocean for Climate Research (ESTOC) dataset,” Geophys. Res. Lett. 42 (12), 4903–4911 (2015).

    Article  Google Scholar 

  28. M. A. Balmaseda, K. Mogensen, and A. Weaver, “Evaluation of the ECMWF ocean reanalysis ORAS4,” Q. J. R. Meteorol. Soc. 139 (674), 1132–1161 (2013).

    Article  Google Scholar 

  29. A. Köhl, “Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic,” Q. J. R. Meteorol. Soc. 141 (686), 166–181 (2015).

    Article  Google Scholar 

  30. A. R. Gorbushkin and A. N. Demidov, “Variability of thermohaline characteristics at 26.5° N in reanalyses and oceanographic section data,” Russ. Meteorol. Hydrol. 44 (7), 474–483 (2019).

    Article  Google Scholar 

  31. T. J. McDougall and P. M. Barker, “Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox,” SCOR/IAPSO, 1–28 (2011).

  32. S. S. Lappo, “On the origin of heat advection northward in the Atlantic Ocean,” in Study of the Ocean–Atmosphere Interaction Processes (Gidrometeoizdat, Moscow, 1984) pp. 125–129 [in Russian].

    Google Scholar 

  33. W. S. Broecker, “The great ocean conveyor,” Oceanography 4, 79–89 (1991).

    Article  Google Scholar 

  34. V. N. Stepanov, D. Iovino, S. Masina, A. Storto, and A. Cipollone, “Methods of calculation of the Atlantic meridional heat and volume transports from ocean models at 26.5° N,” J. Geophys. Res.: Oceans 121, 1459–1475 (2016).

    Article  Google Scholar 

  35. S. M. Griffies, M. Winton, B. Samuels, et al., “Datasets and protocol for the CLIVAR WGOMD coordinated ocean–sea ice reference experiments (COREs),” WCRP Rep. 2012, No. 21.

  36. G. Danabasoglu, S. G. Yeager, D. Bailey, et al., “North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part I: Mean states,” Ocean Model. 73, 76–107 (2014). https://data1. gfdl.noaa.gov/nomads/forms/core/COREv2.html.

    Article  Google Scholar 

  37. Yu. L. Demin, R. A. Ibraev, and A. S. Sarkisyan, “Calibration of the World Ocean circulation and climate reproduction models,” Izv. Akad. Nauk SSSR: Fiz. Atm-os. Okeana 27 (10), 1054–1067 (1991).

    Google Scholar 

  38. A. V. Gusev and N. A. Diansky, “Numerical simulation of the World Ocean Circulation and Its climatic variability for 1948–2007 using the INMOM,” Izv., Atmos. Ocean. Phys. 50 (1), 1–12 (2014).

    Article  Google Scholar 

  39. N. A. Diansky and P. A. Sukhonos, “Multidecadal variability of hydro-thermodynamic characteristics and heat fluxes in North Atlantic,” in Physical and Mathematical Modeling of Earth and Environment Processes (Springer, 2018), pp. 125–137.

    Google Scholar 

  40. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, “The practice of the Lomonosov supercomputer, Otkrytye Sist., No. 7, 36–39 (2012).

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 19-35-90132 (calculating zonally averaged trends and composite differences of thermohaline circulation characteristics from objective analyses and reanalyses and computations with the INMOM) and by the Russian Science Foundation grant no. 19-17-00110 (analyzing the variability of the NA thermohaline circulation characteristics from objective analyses and reanalyses in different AMO periods). The INMOM runs were carried out using the equipment of the shared research facilities of HPC computing resources at Moscow State University [40] and Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bagatinsky.

Additional information

Translated by N. Tret’yakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagatinsky, V.A., Diansky, N.A. Variability of the North Atlantic Thermohaline Circulation in Different Phases of the Atlantic Multidecadal Oscillation from Ocean Objective Analyses and Reanalyses. Izv. Atmos. Ocean. Phys. 57, 208–219 (2021). https://doi.org/10.1134/S000143382102002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382102002X

Keywords:

Navigation