Skip to main content
Log in

Harmonic Measure, Equilibrium Measure, and Thinness at Infinity in the Theory of Riesz Potentials

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The paper deals with the theory of potentials with respect to the α-Riesz kernel |xy|αn of order α ∈ (0,2] on \(\mathbb R^{n}\), \(n\geqslant 3\). Focusing first on the inner α-harmonic measure \({\varepsilon _{y}^{A}}\) (εy being the unit Dirac measure at \(y\in \mathbb R^{n}\), and μA the inner α-Riesz balayage of a Radon measure μ to \(A\subset \mathbb R^{n}\) arbitrary), we describe its Euclidean support, provide a formula for evaluation of its total mass, establish the vague continuity of the map \(y{\mapsto \varepsilon _{y}^{A}}\) outside the inner α-irregular points for A, and obtain necessary and sufficient conditions for \({\varepsilon _{y}^{A}}\) to be of finite energy (more generally, for \({\varepsilon _{y}^{A}}\) to be absolutely continuous with respect to inner capacity) as well as for \({\varepsilon _{y}^{A}}(\mathbb R^{n})\equiv 1\) to hold. Those criteria are given in terms of newly defined concepts of inner α-thinness and inner α-ultrathinness of A at infinity that for α = 2 and A Borel coincide with the concepts of outer 2-thinness at infinity by Doob and Brelot, respectively. Further, we extend some of these results to μA general by verifying the integral representation formula \(\mu ^{A}={\int \limits \varepsilon _{y}^{A}} d\mu (y)\). We also show that for every \(A\subset \mathbb R^{n}\), there exists a Kσ-set A0A such that \(\mu ^A=\mu ^{A_0}\) for all μ, and give various applications of this theorem. In particular, we prove the vague and strong continuity of the inner swept, resp. inner equilibrium, measure under an approximation of A arbitrary, thereby strengthening Fuglede’s result established for A Borel (Acta Math., 1960). Being new even for α = 2, the results obtained also present a further development of the theory of inner Newtonian capacities and of inner Newtonian balayage, originated by Cartan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)

    Book  Google Scholar 

  2. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123, 43–80 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bogdan, K., Kulczycki, T., Kwaśnicki, M.: Estimates and structure of α-harmonic functions. Probab. Theory Relat. Fields 140, 345–381 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bourbaki, N.: Elements of Mathematics. Integration, chapters 1–6. Springer, Berlin (2004)

    Book  Google Scholar 

  5. Brelot, M.: Sur le rôle du point à l’infini dans la théorie des fonctions harmoniques. Ann. Éc. Norm. Sup. 61, 301–332 (1944)

    Article  Google Scholar 

  6. Brelot, M.: Minorantes sousharmoniques, extrémales et capacités. J. Math. Pures Appl. 24, 1–32 (1945)

    MathSciNet  MATH  Google Scholar 

  7. Brelot, M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Math, vol. 175. Springer, Berlin (1971)

    Book  Google Scholar 

  8. Cámera, G. A.: On a condition of thinness at infinity. Compos. Math. 70, 1–11 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Cartan, H.: Théorie du potentiel newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)

    Article  Google Scholar 

  10. Cartan, H.: Théorie générale du balayage en potentiel newtonien. Ann. Univ. Fourier Grenoble 22, 221–280 (1946)

    MATH  Google Scholar 

  11. Deny, J.: Un théorème sur les ensembles effilés. Ann. Univ. Fourier Grenoble 23, 139–142 (1947)

    MathSciNet  MATH  Google Scholar 

  12. Deny, J.: Les potentiels d’énergie finie. Acta Math. 82, 107–183 (1950)

    Article  MathSciNet  Google Scholar 

  13. Doob, J. L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, Berlin (1984)

    Book  Google Scholar 

  14. Dragnev, P. D., Fuglede, B., Hardin, D. P., Saff, E. B., Zorii, N.: Condensers with touching plates and constrained minimum Riesz and Green energy problems. Constr. Approx. 50, 369–401 (2019)

    Article  MathSciNet  Google Scholar 

  15. Dragnev, P. D., Fuglede, B., Hardin, D. P., Saff, E. B., Zorii, N.: Constrained minimum Riesz energy problems for a condenser with intersecting plates. J. Anal. Math. https://doi.org/10.1007/s11854-020-0091-x (2020)

  16. Edwards, R. E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York (1965)

    MATH  Google Scholar 

  17. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    Article  MathSciNet  Google Scholar 

  18. Fuglede, B., Zorii, N.: Green kernels associated with Riesz kernels. Ann. Acad. Sci. Fenn. Math. 43, 121–145 (2018)

    Article  MathSciNet  Google Scholar 

  19. Fuglede, B., Zorii, N.: An alternative concept of Riesz energy of measures with application to generalized condensers. Potential Anal. 51, 197–217 (2019)

    Article  MathSciNet  Google Scholar 

  20. Fuglede, B., Zorii, N.: Various concepts of Riesz energy of measures and application to condensers with touching plates. Potential Anal. 53, 1191–1223 (2020)

    Article  MathSciNet  Google Scholar 

  21. Landkof, N. S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)

    Book  Google Scholar 

  22. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1997)

    Google Scholar 

  23. Zorii, N.: An extremal problem of the minimum of energy for space condensers. Ukrainian Math. J. 38, 365–369 (1986)

    Article  Google Scholar 

  24. Zorii, N.: A problem of minimum energy for space condensers and Riesz kernels. Ukrainian Math. J. 41, 29–36 (1989)

    Article  MathSciNet  Google Scholar 

  25. Zorii, N.: Interior capacities of condensers in locally compact spaces. Potential Anal. 35, 103–143 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zorii, N.: Constrained energy problems with external fields for vector measures. Math. Nachr. 285, 1144–1165 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zorii, N.: Equilibrium problems for infinite dimensional vector potentials with external fields. Potential Anal. 38, 397–432 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zorii, N.: Necessary and sufficient conditions for the solvability of the Gauss variational problem for infinite dimensional vector measures. Potential Anal. 41, 81–115 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zorii, N.: A theory of inner Riesz balayage and its applications. Bull. Pol. Acad. Sci. Math. 68, 41–67 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zorii, N.: A concept of weak Riesz energy with application to condensers with touching plates. Anal. Math. Phys. 10, 43 (2020). https://doi.org/10.1007/s13324-020-00384-1

    Article  MathSciNet  Google Scholar 

  31. Zorii, N.: Balayage of measures on a locally compact space. arXiv:2010.07199 (2020)

Download references

Acknowledgements

I express my sincere thanks to Prof. Dr. Krzysztof Bogdan and Prof. Dr. Wolfhard Hansen for many helpful discussions on the topic in question. I am also indebted to the anonymous referee for valuable suggestions, helping me in improving the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Zorii.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Bent Fuglede on the occasion of his 95th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorii, N. Harmonic Measure, Equilibrium Measure, and Thinness at Infinity in the Theory of Riesz Potentials. Potential Anal 57, 447–472 (2022). https://doi.org/10.1007/s11118-021-09923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09923-2

Keywords

Mathematics Subject Classification (2010)

Navigation