Skip to main content
Log in

Quinoxaline 1,4-di-N-oxides: a review of the importance of their structure in the development of drugs against infectious diseases and cancer

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Quinoxaline 1,4-di-N-oxides (QdNO’s) are potent drugs used since the middle of the last century as food additives to improve animal growth; however, their use as antibacterial agents led to an interest in investigating their mechanism of action, discovering that this heterocycle can cause DNA damage. Consequently, many molecules with different applications have been developed, with most of the research focused on studying their action as antibiotics, antifungals, antiparasitics, antituberculous, and anticancer agents. This review aims to present a condensate of the leading QdNO’s derivatives, as well as a description of the biological activities finding the importance of the nature and type of substituents present in positions R2, R3, R6, and R7 when they are biologically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3D-QSAR:

Three-Dimensional Quantitative Structure–Activity Relationships

CQ:

Chloroquine

HAPs:

Hypoxia-Activated Prodrugs

INH:

Isonicotinic Acid Hydrazide

MIC:

Minimum Inhibitory Concentration

MDR-TB:

Multidrug-Resistant Tuberculosis

PQ:

Primaquine

QdNO’s:

Quinoxaline 1,4-di-N-oxides

QSAR:

Quantitative Structure–Activity Relationship

ROS:

Reactive Oxygen Species

SAR:

Structure–Activity Relationship

TC:

anti-Trypanosoma cruzi

TPZ:

Tirapazamine

ZOI:

Zone of Inhibition

References

  1. Landquist JK. Quinoxaline N-oxides. Part I. The oxidation of quinoxaline and its Bz-substituted derivatives. J Chem Soc. 1953;2816–21. https://doi.org/10.1039/JR9530002816.

  2. Silk JA. Quinoxaline N-oxides. Part V. Further Bz-substituted derivatives. J Chem Soc. 1956;2058–63. https://doi.org/10.1039/JR9560002058.

  3. González M, Cerecetto H, Monge A. Quinoxaline 1,4-dioxide and phenazine 5,10-dioxide. Chemistry and Biology. In: Khan MTH, editor. Bioactive heterocycles V. Topics in heterocyclic chemistry. 11. Berlin Heidelberg: Springer. 2007. p. 179–211. https://doi.org/10.1007/7081_2007_066.

  4. McIlwain H. Bacterial inhibition by metabolite analogues. Part V. Reactions and antibacterial properties of p-diazine di-N-oxides. J Chem Soc. 1943;322–5. https://doi.org/10.1039/JR9430000322.

  5. Lima LM, do Amaral DN. Beirut reaction and its application in the synthesis of quinoxaline‐N, N′‐dioxides bioactive compounds. Rev Virtual Quim. 2013;5:1075–100. https://doi.org/10.5935/1984-6835.20130079.

    Article  CAS  Google Scholar 

  6. Porter AEA Pyrazines and their benzo derivatives. In: Katritzky AR, editor. Comprehensive heterocyclic chemistry. 3. Florida: Pergamon Press; 1984. p. 157–98. https://doi.org/10.1016/B978-008096519-2.00036-9.

  7. Viktorsson EÖ, Melling Grøthe B, Aesoy R, Sabir M, Snellingen S, Prandina A, et al. Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives. Bioorg Med Chem. 2017;25:2285–93. https://doi.org/10.1016/j.bmc.2017.02.058.

    Article  CAS  PubMed  Google Scholar 

  8. Clemo GR, McIlwain H. The phenazine series. Part VII. The pigment of Chromobacterium iodinum; the phenazine di-N-oxides. J Chem Soc. 1938;30:479–83. https://doi.org/10.1039/JR9380000479.

    Article  Google Scholar 

  9. Gómez-Caro LC, Sánchez-Sánchez M, Bocanegra-García V, Rivera G, Monge A. Synthesis of quinoxaline 1,4-di-N-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures. Quím Nova. 2011;34:1147–51. https://doi.org/10.1590/S0100-40422011000700008.

    Article  Google Scholar 

  10. Jiang J, Guiza Beltran D, Schacht A, Wright S, Zhang L, Du L. Functional and structural analysis of phenazine o-methyltransferase LaPhzM from Lysobacter antibioticus OH13 and one-pot enzymatic synthesis of the antibiotic Myxin. ACS Chem Biol. 2018;13:1003–12. https://doi.org/10.1021/acschembio.8b00062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Said SB, El-Ablack FZ, Elbeheiry HM. Synthesis and characterization of newly fused 1,2-dihydropyrido[3,4-b], bridged oxadiazol-2-yl, 4-substituted-benzylidene hydrazide and arylidene 6-chloroquinoxaline 1,4-dioxides. J Braz Chem Soc. 2018;29:2060–71. https://doi.org/10.21577/0103-5053.20180081.

    Article  CAS  Google Scholar 

  12. Carta A, Corona P, Loriga M. Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities. Curr Med Chem. 2005;12:2259–72. https://doi.org/10.2174/0929867054864831.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng G, Sa W, Cao C, Guo L, Hao L, Liu Z, et al. Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of actions. Front Pharmacol. 2016;7:1–21. https://doi.org/10.3389/fphar.2016.00064.

    Article  CAS  Google Scholar 

  14. Torres E, Moreno-Viguri E, Galiano S, Devarapally G, Crawford PW, Azqueta A, et al. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur J Med Chem. 2013;66:324–34. https://doi.org/10.1016/j.ejmech.2013.04.065.

    Article  CAS  PubMed  Google Scholar 

  15. Gil A, Pabón A, Galiano S, Burguete A, Pérez-Silanes S, Deharo E, et al. Synthesis, biological evaluation and structure-activity relationships of new quinoxaline derivatives as anti-Plasmodium falciparum agents. Molecules. 2014;19:2166–80. https://doi.org/10.3390/molecules19022166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivera G, Shah SSA, Arrieta-Baez D, Palos I, Mongue A, Sánchez-Torres LE. Esters of quinoxaline 1,4-di-N-oxide with cytotoxic activity on tumor cell lines based on NCI-60 panel. Iran J Pharm Res. 2017;16:953–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Palos I, Luna-Herrera J, Lara-Ramírez E, Loera-Piedra A, Fernández-Ramírez E, Aguilera-Arreola MG, et al. Anti-Mycobacterium tuberculosis activity of esters of quinoxaline 1,4-di-N-oxide. Molecules. 2018;23:1453. https://doi.org/10.3390/molecules23061453.

    Article  CAS  PubMed Central  Google Scholar 

  18. Urquiola C, Vieites M, Torre MH, Cabrera M, Lavaggi ML, Cerecetto H, et al. Cytotoxic palladium complexes of bioreductive quinoxaline N1, N4-dioxide prodrugs. Bioorg Med Chem. 2009;17:1623–9. https://doi.org/10.1016/j.bmc.2008.12.064.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Zhang H, Huang L, Pan Y, Li J, Chen D, et al. Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides. Chem Res Toxicol. 2015;28:470–81. https://doi.org/10.1021/tx5004326.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng G, Li B, Wang C, Zhang H, Liang G, Weng Z, et al. Systematic and molecular basis of the antibacterial action of quinoxaline 1,4-di-N-oxides against Escherichia coli. Plos ONE. 2015;10:e0136450. https://doi.org/10.1371/journal.pone.0136450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu F, Cheng G, Hao H, Wang Y, Wang X, Chen D, et al. Mechanisms of antibacterial action of quinoxaline 1,4-di-N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Front Microbiol. 2016;7:1–12. https://doi.org/10.3389/fmicb.2016.01948.

    Article  Google Scholar 

  22. Liu Q, Lei Z, Wu Q, Awais I, Shabbir MAB, Ahmed S, et al. The reproductive toxicity of mequindox in a two-generation study in wistar rats. Front Pharmacol. 2018;9:1–14. https://doi.org/10.3389/fphar.2018.00870.

    Article  CAS  Google Scholar 

  23. Yoshimura H. Teratogenic assessment of carbadox in rats. Toxicol Lett. 2002;129:115–8. https://doi.org/10.1016/S0378-4274(01)00522-7.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Lei Z, Wu Q, Huang D, Xie S, Wang X, et al. Mequindox induced genotoxicity and carcinogenicity in mice. Front Pharmacol. 2018;9:1–16. https://doi.org/10.3389/fphar.2018.00361.

    Article  CAS  Google Scholar 

  25. Carta A, Paglietti G, Rahbar Nikookar ME, Sanna P, Sechi L, Zanetti S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur J Med Chem. 2002;37:355–66. https://doi.org/10.1016/S0223-5234(02)01346-6.

    Article  CAS  PubMed  Google Scholar 

  26. Miller TW, Miller AK, Wolf FJ, Stapley EO, Hendlin D. Antibiotic MSD-819. Preparation and properties of biologically active derivatives. J Antibiot. 1969;22:293–6. https://doi.org/10.7164/antibiotics.22.293.

    Article  CAS  Google Scholar 

  27. Dirlam JP, Czuba LJ, Dominy BW, James RB, Pezzullo RM, Presslitz JE, et al. Synthesis and antibacterial activity of 1-hydroxy-1-methyl-1,3-dihydrofuro[3,4-b]quinoxaline 4,9-dioxide and related compounds. J Med Chem. 1979;22:1118–21. https://doi.org/10.1021/jm00195a022.

    Article  CAS  PubMed  Google Scholar 

  28. Carta A, Loriga M, Paglietti G, Mattana A, Fiori PL, Mollicotti P, et al. Synthesis, anti-mycobacterial, antitrichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur J Med Chem. 2004;39:195–203. https://doi.org/10.1016/j.ejmech.2003.11.008.

    Article  CAS  PubMed  Google Scholar 

  29. Lakshmi Y, Murthy N, Mani P, Govindh B, Diwakar BS, Karthikeyan N, et al. Synthesis and characterization of 2,3-diphenylquinoxaline 1,4-di-N-oxide derivatives and study of their antimicrobial activities. Res J Pharm Biol Chem Sci. 2011;2:553–60.

    Google Scholar 

  30. World Health Organization. Global tuberculosis report. 2020. https://www.who.int/publications/i/item/9789240013131. Accessed 01 Mar 2021.

  31. dos Santos Fernandes GF, Carolina-de Souza PC, Moreno-Viguri E, Santivañez-Veliz M, Paucar R, Pérez-Silanes S, et al. Design, synthesis, and characterization of N-oxide-containing heterocycles with in vivo sterilizing antitubercular activity. J Med Chem. 2017;60:8647–60. https://doi.org/10.1021/acs.jmedchem.7b01332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vicente E, Villar R, Pérez-Silanes S, Aldana I, Goldman RC, Monge A. Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis. Infect Disord Drug Targets. 2011;11:196–204. https://doi.org/10.2174/187152611795589735.

    Article  CAS  PubMed  Google Scholar 

  33. Vieira M, Pinheiro C, Fernandes R, Noronha JP, Prudêncio C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol Res. 2014;169:287–93. https://doi.org/10.1016/j.micres.2013.06.015.

    Article  CAS  PubMed  Google Scholar 

  34. Ortega MA, Sainz Y, Montoya ME, Jaso A, Zarranz B, Aldana I, et al. Anti-Mycobacterium tuberculosis agents derived from quinoxaline-2-carbonitrile and quinoxaline-2-carbonitrile 1,4-di-N-oxide. Arznei-Forsch/Drug Res. 2002;52:113–9. https://doi.org/10.1055/s-0031-1299866.

    Article  CAS  Google Scholar 

  35. Zarranz B, Jaso A, Aldana I, Monge A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg Med Chem. 2003;11:2149–56. https://doi.org/10.1016/s0968-0896(03)00119-6.

    Article  CAS  PubMed  Google Scholar 

  36. Radwan AA, Abdel-Magged WM. In silico studies of quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as antimycobacterial agents. Molecules. 2014;19:2247–60. https://doi.org/10.3390/molecules19022247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moreno E, Ancizu S, Pérez-Silanes S, Torres E, Aldana I, Monge A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur J Med Chem. 2010;45:4418–26. https://doi.org/10.1016/j.ejmech.2010.06.036.

    Article  CAS  PubMed  Google Scholar 

  38. Jaso A, Zarranz B, Aldana I, Monge A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J Med Chem. 2005;48:2019–25. https://doi.org/10.1021/jm049952w.

    Article  CAS  PubMed  Google Scholar 

  39. Villar R, Vicente E, Solano B, Pérez-Silanes S, Aldana I, Maddry JA, et al. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J Antimicrob Chemother. 2008;62:547–54. https://doi.org/10.1093/jac/dkn214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zanetti S, Sechi LA, Molicotti P, Cannas S, Bua A, Deriu A, et al. In vitro activity of new quinoxalin 1,4-dioxide derivatives against strains of Mycobacterium tuberculosis and other mycobacteria. Int J Antimicrob Agents. 2005;25:179–81. https://doi.org/10.1016/j.ijantimicag.2004.11.003.

    Article  CAS  PubMed  Google Scholar 

  41. Keri RS, Pandule SS, Budagumpi S, Nagaraja BM. Quinoxaline and quinoxaline-1,4-di-N-oxides: an emerging class of antimycobacterials. Arch Pharm Chem Life Sci. 2018;351:e1700325. https://doi.org/10.1002/ardp.201700325.

    Article  CAS  Google Scholar 

  42. Pan Y, Li P, Xie S, Tao Y, Chen D, Dai M, et al. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg Med Chem Lett. 2016;26:4146–53. https://doi.org/10.1016/j.bmcl.2016.01.066.

    Article  CAS  PubMed  Google Scholar 

  43. dos Santos Fernandes GF, Moreno‐Viguri E, Santivañez‐Veliz M, Paucar R, Chin CM, Pérez‐Silanes S, et al. A Comparative study of conventional and microwave‐assisted synthesis of quinoxaline 1,4‐di‐N‐oxide N‐acylhydrazones derivatives designed as antitubercular drug candidates. J Heterocycl Chem. 2017;54:2380–8. https://doi.org/10.1002/jhet.2830.

    Article  CAS  Google Scholar 

  44. Torres E, Moreno E, Ancizu S, Barea C, Galiano S, Aldana I, et al. New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem Lett. 2011;21:3699–703. https://doi.org/10.1016/j.bmcl.2011.04.072.

    Article  CAS  PubMed  Google Scholar 

  45. Zarranz B, Jaso A, Aldana I, Monge A, Maurel S, Deharo E, et al. Synthesis and antimalarial activity of new 3-arylquinoxaline-2-carbonitrile derivatives. Arznei-Forsch/Drug Res. 2005;55:754–61. https://doi.org/10.1055/S-0031-1296926.

    Article  CAS  Google Scholar 

  46. Zarranz B, Jaso A, Moreira Lima L, Aldana I, Monge A, Maurel S, et al. Antiplasmodial activity of 3-trifluoromethyl-2-carbonylquinoxaline di-N-oxide derivatives. Braz J Pharm Sci. 2006;42:357–61. https://doi.org/10.1590/S1516-93322006000300005.

    Article  Google Scholar 

  47. Marin A, Moreira Lima L, Solano B, Vicente E, Pérez Silanes S, Maurel S, et al. Antiplasmodial structure-activity relationship of 3-trifluoromethyl-2-arylcarbonylquinoxaline 1,4-di-N-oxide derivatives. Exp Parasitol. 2008;118:25–31. https://doi.org/10.1016/j.exppara.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  48. Bonilla-Ramírez L, Galiano S, Quiliano M, Aldana I, Pabón A. Primaquine-quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar J. 2019;18:201. https://doi.org/10.1186/s12936-019-2825-8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ancizu S, Moreno E, Torres E, Burguete A, Pérez-Silanes S, Benítez D, et al. Heterocyclic-2-carboxylic acid (3-cyano-1,4-di-N-oxidequinoxalin-2-yl) amide derivatives as hits for the development of neglected disease drugs. Molecules. 2009;14:2256–72. https://doi.org/10.3390/molecules14062256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chacón-Vargas KF, Nogueda-Torres B, Sánchez-Torres LE, Suarez-Contreras E, Villalobos-Rocha JC, Torres-Martinez Y, et al. Trypanocidal activity of quinoxaline 1,4 di-N-oxide derivatives as trypanothione reductase inhibitors. Molecules. 2017;22:220. https://doi.org/10.3390/molecules22020220.

    Article  CAS  PubMed Central  Google Scholar 

  51. Aguirre G, Cerecetto H, di Maio R, González M, Montoya Alfaro ME, Jaso A, et al. Quinoxaline N, N’-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure-activity relationships. Bioorg Med Chem Lett. 2004;14:3835–9. https://doi.org/10.1016/j.bmcl.2004.04.088.

    Article  CAS  PubMed  Google Scholar 

  52. Vazquez-Jimenez LKK, Hernandez-Posada MI, Paz-Gonzalez AD, Nogueda-Torres B, Martinez-Vazquez AV, Herrera-Mayorga V, et al. Analysis of the effect of methyl 2-acetamide-3-methylquinoxaline-7-carboxylate 1,4-di-N-oxide on the relative expression of the trypanothione reductase gene in Trypanosome cruzi epimastigotes. Pak J Pharm Sci. 2019;32:1447–52.

    CAS  PubMed  Google Scholar 

  53. Quiliano M, Pabón A, Ramirez-Calderon G, Barea C, Deharo E, Galiano S, et al. New hydrazine and hydrazine quinoxaline 1,4-di-N-oxide derivatives: In silico ADMET, antiplasmodial and antileishmanial activity. Bioorg Med Chem Lett. 2017;27:1820–5. https://doi.org/10.1016/j.bmcl.2017.02.049.

    Article  CAS  PubMed  Google Scholar 

  54. Bonilla-Ramirez L, Rios A, Quiliano M, Ramirez-Calderon G, Beltrán-Hortelano I, Franetich JF, et al. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, plasmodium life cycle stage profile, and preliminary toxicity studies. Eur J Med Chem. 2018;158:68–81. https://doi.org/10.1016/j.ejmech.2018.08.063.

    Article  CAS  PubMed  Google Scholar 

  55. Barea C, Pabón A, Castillo D, Zimic M, Quiliano M, Galiano S, et al. New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities. Bioorg Med Chem Lett. 2011;21:4498–502. https://doi.org/10.1016/j.bmcl.2011.05.125.

    Article  CAS  PubMed  Google Scholar 

  56. Vicente E, Charnaud S, Bongard E, Villar R, Burguete A, Solano B, et al. Synthesis and antiplasmodial activity of 3-furyl and 3-thienylquinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives. Molecules. 2019;13:69–77. https://doi.org/10.3390/molecules13010069.

    Article  Google Scholar 

  57. Barea C, Pabón A, Galiano S, Pérez-Silanes S, Gonzalez G, Deyssard C, et al. Antiplasmodial and leishmanicidal activities of 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives. Molecules. 2012;17:9451–61. https://doi.org/10.3390/molecules17089451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerpe A, Boiani L, Hernández P, Sortino M, Zacchino S, González M, et al. Naftifine-analogues as anti-Trypanosoma cruzi agents. Eur J Med Chem. 2010;45:2154–64. https://doi.org/10.1016/j.ejmech.2010.01.052.

    Article  CAS  PubMed  Google Scholar 

  59. Villalobos-Rocha JC, Sánchez-Torres L, Nogueda-Torres B, Segura-Cabrera A, García-Pérez CA, Bocanegra-García V, et al. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol Res. 2014;113:2027–35. https://doi.org/10.1007/s00436-014-3850-8.

    Article  PubMed  Google Scholar 

  60. Duque-Montaño BE, Gómez-Caro LC, Sanchez-Sanchez M, Monge A, Hernández-Baltazar E, Rivera G, et al. Synthesis and in vitro evaluation of new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide against Entamoeba histolytica. Bioorg Med Chem. 2013;21:4550–8. https://doi.org/10.1016/j.bmc.2013.05.036.

    Article  CAS  PubMed  Google Scholar 

  61. Ajani OO, Nlebemuo MT, Adekoya JA, Ogunniran KO, Siyanbola TO, Ajanaku CO. Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. Acta Pharm. 2019;69:177–96. https://doi.org/10.2478/acph-2019-0013.

    Article  CAS  PubMed  Google Scholar 

  62. Silva L, Coelho P, Soares R, Prudêncio C, Vieira M. Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells. Future Med Chem. 2019;11:645–57. https://doi.org/10.4155/fmc-2018-0251.

    Article  CAS  PubMed  Google Scholar 

  63. Covens A, Blessing J, Bender D, Mannel R, Morgan M. A phase II evaluation of tirapazamine plus cisplatin in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a gynecologic oncology group study. Gynecol Oncol. 2006;100:586–90. https://doi.org/10.1016/j.ygyno.2005.09.032.

    Article  CAS  PubMed  Google Scholar 

  64. Maluf FC, Leiser AL, Aghajanian C, Sabbatini P, Pezzulli S, Chi DS, et al. Phase II study of tirapazamine plus cisplatin in patients with advanced or recurrent cervical cancer. Int J Gynecol Cancer. 2006;16:1165–71. https://doi.org/10.1111/j.1525-1438.2006.00454.x.

    Article  CAS  PubMed  Google Scholar 

  65. Cohen EEW, Rosine D, Haraf DJ, Loh E, Shen L, Lusinchi A, et al. Phase I trial of tirapazamine, cisplatin, and concurrent accelerated boost reirradiation in patients with recurrent head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;67:678–84. https://doi.org/10.1016/j.ijrobp.2006.09.056.

    Article  CAS  PubMed  Google Scholar 

  66. Korgaagnieszka A, Iwan M, Matosiuk D, Rzadkowska M, Szacon E, Humeniuk E, et al. New tirapazamine derivatives protect cardiomyocytes from doxorubicin toxicity. Curr Issues Pharm Med Sci. 2020;33:1–5. https://doi.org/10.2478/cipms-2020-0001.

    Article  CAS  Google Scholar 

  67. Hiremath SB, Devendrappa SL. Safety and efficacy of tirapazamine as anti-cancer drug: a meta-analysis of randomized controlled trials. Int J Basic Clin Pharmacol. 2018;7:783–91. https://doi.org/10.18203/2319-2003.ijbcp20181187.

    Article  Google Scholar 

  68. Xia Q, Zhang L, Zhang J, Sheng R, Yang B, He Q, et al. Synthesis, hypoxia-selective cytotoxicity of new 3-amino-1,2,4-benzotriazine-1,4-dioxide derivatives. Eur J Med Chem. 2011;46:919–26. https://doi.org/10.1016/j.ejmech.2011.01.007.

    Article  CAS  PubMed  Google Scholar 

  69. Shen X, Gates KS. Enzyme-activated generation of reactive oxygen species from heterocyclic N-oxides under aerobic and anaerobic conditions and its relevance to hypoxia-selective prodrugs. Chem Res Toxicol. 2019;32:348–61. https://doi.org/10.1021/acs.chemrestox.9b00036.

    Article  CAS  PubMed  Google Scholar 

  70. Amin KM, Ismail MMF, Noaman E, Soliman DH, Ammar YA. New quinoxaline 1,4-di-N-oxides. Part 1: Hypoxia-selective cytotoxins and anticancer agents derived from quinoxaline 1,4-di-N-oxides. Bioorg Med Chem. 2006;14:6917–23. https://doi.org/10.1016/j.bmc.2006.06.038.

    Article  CAS  PubMed  Google Scholar 

  71. Anderson RF, Yadav P, Shinde SS, Hong CR, Pullen SM, Reynisson J, et al. Radical chemistry and cytotoxicity of bioreductive 3-substituted quinoxaline di-N-oxides. Chem Res Toxicol. 2016;29:1310–24. https://doi.org/10.1021/acs.chemrestox.6b00133.

    Article  CAS  PubMed  Google Scholar 

  72. Solano B, Junnotula V, Marín A, Villar R, Burguete A, Vicente E, et al. Synthesis and biological evaluation of new 2-arylcarbonyl-3-trifluoromethylquinoxaline 1,4-di-N-oxide derivatives and their reduced analogues. J Med Chem. 2007;50:5485–92. https://doi.org/10.1021/jm0703993.

    Article  CAS  PubMed  Google Scholar 

  73. Monge A, Palop JA, López de Ceráin A, Senador V, Martínez-Crespo FJ, Sainz Y, et al. Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides. J Med Chem. 1995;38:1786–92. https://doi.org/10.1021/jm00010a023.

    Article  CAS  PubMed  Google Scholar 

  74. Monge A, Martínez-Crespo FJ, López de Ceráin A, Palop JA, Narro S, Senador V, et al. Hypoxia-selective agents derived from 2-quinoxalinecarbonitrile 1,4-di-N-oxides 2. J Med Chem. 1995;38:4488–94. https://doi.org/10.1021/jm00022a014.

    Article  CAS  PubMed  Google Scholar 

  75. Torre MH, Gambino D, Araujo J, Cerecetto H, González M, Lavaggi ML, et al. Novel Cu(II) quinoxaline N1, N4-dioxide complexes as selective hypoxic cytotoxins. Eur J Med Chem. 2005;40:473–80. https://doi.org/10.1016/j.ejmech.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship awarded with No. 291197.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Socorro Leyva-Ramos or Alberto Pedraza-Alvarez.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyva-Ramos, S., Pedraza-Alvarez, A. Quinoxaline 1,4-di-N-oxides: a review of the importance of their structure in the development of drugs against infectious diseases and cancer. Med Chem Res 30, 1175–1184 (2021). https://doi.org/10.1007/s00044-021-02731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02731-8

Keywords

Navigation