Skip to main content
Log in

p + ip-wave pairing symmetry at type-II van Hove singularities

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transition-metal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)

    Article  ADS  Google Scholar 

  2. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  3. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)

    Article  Google Scholar 

  4. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)

    Article  Google Scholar 

  5. L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)

    Article  ADS  Google Scholar 

  6. T. H. Hsieh, H. Lin, J. W. Liu, W. H. Duan, A. Bansil, and L. Fu, Topological crystalline insulators in the SnTe material class, Nat. Commun. 3(1), 982 (2012)

    Article  ADS  Google Scholar 

  7. Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)

    Article  ADS  Google Scholar 

  8. H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)

    Google Scholar 

  9. B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)

    Article  Google Scholar 

  10. N. N. Hao and J. P. Hu, Topological phases in the single-layer FeSe, Phys. Rev. X 4(3), 031053 (2014)

    Google Scholar 

  11. X. X. Wu, S. S. Qin, Y. Liang, C. C. Le, H. Fan, and J. P. Hu, CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity, Phys. Rev. B 91(8), 081111 (2015)

    Article  ADS  Google Scholar 

  12. X. X. Wu, S. S. Qin, Y. Liang, H. Fan, and J. P. Hu, Topological characters in Fe(Te1−xSex) thin films, Phys. Rev. B 93(11), 115129 (2016)

    Article  ADS  Google Scholar 

  13. D. F. Wang, L. Y. Kong, P. Fan, H. Chen, S. Y. Zhu, W. Y. Liu, L. Cao, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. Ding, and H. J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362(6412), 333 (2018)

    Article  ADS  Google Scholar 

  14. Z. B. Yan, F. Song, and Z. Wang, Majorana corner modes in a high-temperature platform, Phys. Rev. Lett. 121(9), 096803 (2018)

    Article  ADS  Google Scholar 

  15. Q. Y. Wang, C. C. Liu, Y. M. Lu, and F. Zhang, High-temperature Majorana corner states, Phys. Rev. Lett. 121(18), 186801 (2018)

    Article  ADS  Google Scholar 

  16. R. X. Zhang, W. S. Cole, and S. Das Sarma, Helical hinge Majorana modes in iron-based superconductors, Phys. Rev. Lett. 122(18), 187001 (2019)

    Article  ADS  Google Scholar 

  17. X. X. Wu, W. A. Benalcazar, Y. X. Li, R. Thomale, C. X. Liu, and J. P. Hu, Boundary-obstructed topological high-Tc superconductivity in iron pnictides, Phys. Rev. X 10(4), 041014 (2020)

    Google Scholar 

  18. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. H. Freedman, P/NP, and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)

    Article  ADS  Google Scholar 

  21. L. Y. Kong, S. Y. Zhu, M. Papaj, H. Chen, L. Cao, H. Isobe, Y. Q. Xing, W. Y. Liu, D. F. Wang, P. Fan, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. J. Gao, and H. Ding, Half-integer level shift of vortex bound states in an iron-based superconductor, Nat. Phys. 15(11), 1181 (2019)

    Article  Google Scholar 

  22. S. Y. Zhu, L. Y. Kong, L. Cao, H. Chen, M. Papaj, S. X. Du, Y. Q. Xing, W. Y. Liu, D. F. Wang, C. M. Shen, F. Z. Yang, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, Y. Y. Zhang, H. Ding, and H. J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367(6474), 189 (2020)

    Article  ADS  Google Scholar 

  23. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)

    Article  ADS  Google Scholar 

  24. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)

    Article  ADS  Google Scholar 

  25. M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)

    Article  ADS  Google Scholar 

  26. X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magicangle bilayer graphene, Nature 574(7780), 653 (2019)

    Article  ADS  Google Scholar 

  27. A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lancon, G. Pepe, B. Moubaraki, and T. J. Hicks, Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3, Phys. Rev. B 92(22), 224408 (2015)

    Article  ADS  Google Scholar 

  28. B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. MacDonald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)

    Article  ADS  Google Scholar 

  29. N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)

    Article  ADS  Google Scholar 

  30. J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. Park, and H. Cheong, Ising-type magnetic ordering in atomically thin FePS3, Nano Lett. 16(12), 7433 (2016)

    Article  ADS  Google Scholar 

  31. C. T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, and J. G. Park, Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals, Sci. Rep. 6(1), 20904 (2016)

    Article  ADS  Google Scholar 

  32. Y. G. Wang, J. J. Ying, Z. Y. Zhou, J. L. Sun, T. Wen, Y. N. Zhou, N. N. Li, Q. Zhang, F. Han, Y. M. Xiao, P. Chow, W. G. Yang, V. V. Struzhkin, Y. S. Zhao, and H. K. Mao, Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover, Nat. Commun. 9(1), 1914 (2018)

    Article  ADS  Google Scholar 

  33. Y. H. Gu, Q. Zhang, C. C. Le, Y. X. Li, T. Xiang, and J. P. Hu, Ni-based transition metal trichalcogenide mono-layer: A strongly correlated quadruple-layer graphene, Phys. Rev. B 100(16), 165405 (2019)

    Article  ADS  Google Scholar 

  34. H. Yao and F. Yang, Topological odd-parity superconductivity at type-II two-dimensional van Hove singularities, Phys. Rev. B 92(3), 035132 (2015)

    Article  ADS  Google Scholar 

  35. R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys. 8(2), 158 (2012)

    Article  Google Scholar 

  36. W. S. Wang, Y. Y. Xiang, Q. H. Wang, F. Wang, F. Yang, and D. H. Lee, Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near 1/4 doping, Phys. Rev. B 85(3), 035414 (2012)

    Article  ADS  Google Scholar 

  37. M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Competing many-body instabilities and unconventional superconductivity in graphene, Phys. Rev. B 82(2), 020507 (2012)

    Article  Google Scholar 

  38. T. X. Ma, F. Yang, H. Yao, and H. Q. Lin, Possible triplet p+ip superconductivity in graphene at low filling, Phys. Rev. B 90, 245114 (2014)

    Article  ADS  Google Scholar 

  39. Z. Y. Meng, F. Yang, K. S. Chen, H. Yao, and H. Y. Kee, Evidence for spin-triplet odd-parity superconductivity close to type-II van Hove singularities, Phys. Rev. B 91(18), 184509 (2015)

    Article  ADS  Google Scholar 

  40. X. Chen, Y. G. Yao, H. Yao, F. Yang, and J. Ni, Topological p+ip superconductivity in doped graphene-like singlesheet materials BC3, Phys. Rev. B 92(17), 174503 (2015)

    Article  ADS  Google Scholar 

  41. L. D. Zhang, F. Yang, and Y. G. Yao, Itinerant ferromagnetism and p+ip superconductivity in doped bilayer silicene, Phys. Rev. B 92(10), 104504 (2015)

    Article  ADS  Google Scholar 

  42. C. C. Liu, L. D. Zhang, W. Q. Chen, and F. Yang, Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene, Phys. Rev. Lett. 121(21), 217001 (2018)

    Article  ADS  Google Scholar 

  43. H. Isobe, N. F. Q. Yuan, and L. Fu, Unconventional superconductivity and density waves in twisted bilayer graphene, Phys. Rev. X 8(4), 041041 (2018)

    Google Scholar 

  44. D. Di Sante, X. Wu, M. Fink, W. Hanke, and R. Thomale, Triplet superconductivity in the Dirac semimetal germanene on a substrate, Phys. Rev. B 99(20), 201106 (2019)

    Article  ADS  Google Scholar 

  45. X. X. Wu, M. Fink, W. Hanke, R. Thomale, and D. Di Sante, Unconventional superconductivity in a doped quantum spin Hall insulator, Phys. Rev. B 100(4), 041117 (2019)

    Article  ADS  Google Scholar 

  46. Y. X. Li, X. X. Wu, Y. H. Gu, C. C. Le, S. S. Qin, R. Thomale, and J. P. Hu, Topological superconductivity in Ni-based transition metal trichalcogenides, Phys. Rev. B 100, 214513 (2019)

    Article  ADS  Google Scholar 

  47. S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)

    Article  ADS  Google Scholar 

  48. A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)

    Article  ADS  Google Scholar 

  49. X. X. Wu, F. Yang, C. C. Le, H. Fan, and J. P. Hu, Triplet pz-wave pairing in quasi-one-dimensional A2Cr3As3 superconductors (A = K, Rb, Cs), Phys. Rev. B 92(10), 104511 (2015)

    Article  ADS  Google Scholar 

  50. L. D. Zhang, F. Yang, and Y. G. Yao, Possible electric-field-induced superconducting states in doped silicene, Sci. Rep. 5(1), 8203 (2015)

    Article  Google Scholar 

  51. Y. T. Kang, C. Lu, F. Yang, and D. X. Yao, Single-orbital realization of high-temperature s± superconductivity in the square-octagon lattice, Phys. Rev. B 99(18), 184506 (2019)

    Article  ADS  Google Scholar 

  52. L. D. Zhang, X. X. Wu, H. Fan, F. Yang, and J. P. Hu, Revisitation of superconductivity in K2Cr3As3 based on the six-band model, Europhys. Lett. 113(3), 37003 (2016)

    Article  Google Scholar 

  53. F. Liu, C. C. Liu, K. H. Wu, F. Yang, and Y. G. Yao, d+id chiral superconductivity in bilayer silicene, Phys. Rev. Lett. 111(6), 066804 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Xiang Li.

Additional information

arXiv: 2103.1375. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1068-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YX., Yang, XT. p + ip-wave pairing symmetry at type-II van Hove singularities. Front. Phys. 16, 53501 (2021). https://doi.org/10.1007/s11467-021-1068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1068-7

Keywords

Navigation