Skip to main content
Log in

Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”

  • Viewpoint
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This supplement contains 222 (angel number) further papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers and only concerns bulk materials. Thus, the number of such papers has reached huge value 727. The papers marked in red have drastically broken the principles of symmetry because they reported the existence of ferroelectricity in crystals without the polar axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

References for Part I

  1. N. Ahmad, G. M. Bhat, and P. N. Kotru, Optical, dielectric and ferroelectric characteristics of gel grown erbium tartrate hexahydrate crystals, J. Electron. Mater. 48(5), 3006 (2019)

    Article  ADS  Google Scholar 

  2. N. Sharma, A. Gaur, and R. K. Kotnala, Signature of weak ferroelectricity and ferromagnetism in Mn doped CuO nanostructures, J. Magn. Magn. Mater. 377, 183 (2015)

    Article  ADS  Google Scholar 

  3. E. Kabir, M. Khatun, R. J. Mustafa, K. Singh, and M. Rahman, AC electrical conductivity and dielectric properties of doping induced molecular ferroelectric diisopropylammonium bromide, Mater. Res. Express 6(9), 096306 (2019)

    Article  ADS  Google Scholar 

  4. S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and S. H, Assessment of the imperative features of an L-arginine 4-nitrophenolate 4-nitrophenol dihydrate single crystal for nonlinear optical applications, Mater. Chem. Front. 1(6), 1107 (2017)

    Article  Google Scholar 

  5. B. Want, Dielectric, ferroelectric and non-linear optical behavior of crystalline erbium tartrate dihydrate, Curr. Appl. Phys. 13(9), 1928 (2013)

    Article  ADS  Google Scholar 

  6. E. Jerusha and S. S. Kirupavathy, Effect of L-asparagine as dopant on the growth and characteristics of ammonium tetroxalate dihydrate single crystal, Mater. Sci. Pol. 38(1), 48 (2020)

    Article  ADS  Google Scholar 

  7. S. Suresh, Growth, optical, dielectric and ferroelectric properties of nonlinear optical single crystal: Glycinephthalic acid, J. Electron. Mater. 45(11), 5904 (2016)

    Article  ADS  Google Scholar 

  8. Z. Hu, H. Zhao, Z. Cheng, J. Ding, H. Gao, Y. Han, S. Wang, Z. Xu, Y. Zhou, T. Jia, H. Kimura, and M. Osada, van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals, Phys. Chem. Chem. Phys. 22(7), 4235 (2020)

    Article  Google Scholar 

  9. R. N. Perumal and A. Marimuthu, Temperature dependence on dielectric and ferroelectric properties of rubidium titanyl phosphate single crystal, J. Mater. Sci. Mater. Electron. 31(8), 6385 (2020)

    Article  Google Scholar 

References for Part II

  1. G. Gowri, R. Saravanan, S. Sasikumar, and I. B. Shameem Banu, Exchange bias effect, ferroelectric property, primary bonding and charge density analysis of La1−xCexFeO3 multiferroics, Mater. Res. Bull. 118, 110512 (2019)

    Article  Google Scholar 

  2. R. RameshKumar, T. Ramachandran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 1694 (2019)

    Article  ADS  Google Scholar 

  3. Y. Wu, Q. Xie, M. Li, X. Sun, H. L. Cai, and X. S. Wu, Structural and ferroelectric properties of orthogonal crystalline in Fe-doped HoMnO3 synthesized at normal pressure, J. Mater. Sci. Mater. Electron. 30(8), 7629 (2019)

    Article  Google Scholar 

  4. S. Leelashree, and S. Srinath, Investigation of structural, ferroelectric, and magnetic properties of Ladoped LuFeO3 nanoparticles, J. Supercond. Nov. Magn. 33(6), 1587 (2020)

    Article  Google Scholar 

  5. Q. Yao, X. Xu, Y. He, W. Mao, and X. Li, Improved ferroelectric and ferromagnetic properties of (1 − x)BiFeO3xBaTiO3 ceramics, J. Supercond. Nov. Magn. 32(4), 1001 (2019)

    Article  Google Scholar 

  6. W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, and X. Li, Study on the magnetic and ferroelectric properties of Bi0.95Dy0.05Fe0.95M0.05O3 (M = Mn, Co) ceramics, J. Supercond. Nov. Magn. 30(11), 3001 (2017)

    Article  Google Scholar 

  7. R. Wang, H. Shu, W. Mao, X. Wang, H. Xue, L. Chu, J. Yang, and X. Li, Study on the magnetic and ferroelectric properties of Ca-doped and (Eu, Ca) co-doped BiFeO3, J. Supercond. Nov. Magn. 30(4), 999 (2017)

    Article  Google Scholar 

  8. J. Márquez Álvarez, D. A. Landínez Téllez, J. A. Cardona Vásquez, J. Roa-Rojas, and E. Ortiz Muñoz, Electric and structural properties of the new Ba2TiZrO6 ferroelectric complex perovskite, J. Supercond. Nov. Magn. 26(7), 2459 (2013)

    Article  Google Scholar 

  9. W. Yang, Z. Wang, T. Wang, M. Jin, J. Xu, and Y. Sui, Ferroelectric and magnetic properties of CoFe2O4/BaTiO3 prepared by microwave-assisted solgel method, J. Supercond. Nov. Magn. 30(2), 539 (2017)

    Article  Google Scholar 

  10. M. V. Shisode, D. N. Bhoyar, P. P. Khirade, and K. M. Jadhav, Structural, microstructural, magnetic, and ferroelectric properties of Ba2+-doped BiFeO3 nanocrystalline multifferroic material, J. Supercond. Nov. Magn. 31(8), 2501 (2018)

    Article  Google Scholar 

  11. S. Matteppanavar, S. Rayaprol, A. V. Anupama, B. Sahoo, and B. Angadi, On the room temperature ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O3, J. Supercond. Nov. Magn. 28(8), 2465 (2015)

    Article  Google Scholar 

  12. S. Matteppanavar, S. i, S. Rayaprol, B. Angadi, and B. Sahoo, Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3 ceramic, J. Supercond. Nov. Magn. 30(5), 1317 (2017)

    Article  Google Scholar 

  13. Z. Chen, C. Wang, T. Li, J. Hao, and J. Zhang, Investigation on electrical and magnetic properties of Gddoped BiFeO3, J. Supercond. Nov. Magn. 23(4), 527 (2010)

    Article  Google Scholar 

  14. J. S. Bangruwa, S. Kumar, A. Chauhan, P. Kumar, and V. Verma, Modified magnetic and electrical properties of perovskite-spinel multiferroic composites, J. Supercond. Nov. Magn. 32(8), 2559 (2019)

    Article  Google Scholar 

  15. T. Murtaza, I. A. Salmani, J. Ali, and M. S. Khan, Effect of Mo doping at the B site on structural and electrical properties of multiferroic BiFeO3, J. Supercond. Nov. Magn. 31(6), 1955 (2018)

    Article  Google Scholar 

  16. W. Yang, Z. Wang, Z. Zhou, T. Wang, M. Jin, J. Xu, and Y. Sui, Synthesis and characterization of CoFe2O4/BaTiO3 multiferroic composites, J. Supercond. Nov. Magn. 30(3), 665 (2017)

    Article  Google Scholar 

  17. J. A. Cardona Vásquez, D. A. Landínez Téllez, J. A. Cuervo Farfán, J. Roa-Rojas, and M. E. Gómez, Synthesis and physical properties of La0.53Ca0.26Ba0.21Mn0.77Ti0.21Zr0.02O3 multiferroic material, J. Supercond. Nov. Magn. 26(7), 2455 (2013)

    Article  Google Scholar 

  18. J. Chen, H. Dai, T. Li, D. Liu, R. Xue, H. Xiang, and Z. Chen, Role of Mn substitution in the multiferroic properties of BiFeO3 ceramics, J. Supercond. Nov. Magn. 28(9), 2751 (2015)

    Article  Google Scholar 

  19. Y. Li, H. Zhang, X. Dong, Q. Li, W. Chen, H. Liu, X. Ge, X. Li, C. Dong, and S. Ren, Room-temperature multiferroic properties and local structures of the Mndoped and (Pb, Mn)-codoped BiFeO3, J. Supercond. Nov. Magn. 27(2), 575 (2014)

    Article  Google Scholar 

  20. J. Singh, A. Vasishth, and N. K. Verma, Multiferroic properties of Zn1−xMgxO nanoparticles, J. Supercond. Nov. Magn. 28(10), 3069 (2015)

    Article  Google Scholar 

  21. H. Shu, Y. Ma, Z. Wang, W. Mao, L. Chu, J. Yang, Q. Wu, Y. Min, R. Song, and X. Li, Structural, optical and multiferroic properties of (Nd, Zn)-co-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 30(11), 3027 (2017)

    Article  Google Scholar 

  22. H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)

    Article  Google Scholar 

  23. S. Jindal, S. Devi, A. Vasishth, and G. Kumar, Study of structural and dielectrical properties of lead free polycrystalline electro ceramics Ba5CaTi2Nb8O30 (BCTN) for microwave tunable device applications, Mater. Sci. Appl. 9(1), 55 (2018)

    Google Scholar 

  24. J. Panda, B. B. Mohanty, P. S. Sahoo, and R. N. P. Choudhary, Preparation and study of dielectric and electrical conductivity of Ba5NdTi3V7O30 ceramics, Open Acc. Libr. J. 5, e4864 (2018)

    Google Scholar 

  25. N. Kumar, B. Narayan, M. Kumar, A. Kumar Singh, S. Dhiman, and S. Kumar, Effect of Nd3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO3-PbTiO3 binary system, SN Appl. Sci. (Basel) 1, 874 (2019)

    Article  Google Scholar 

  26. P. Bai, Y. Zeng, J. Han, Y. Wei, M. Li, and Y. Li, Structure, electrical, dielectric and ferroelectric properties of (1 − x)BiFeO3xAl2O3 ceramics, J. Mater. Sci. Mater. Electron. 30(16), 15413 (2019)

    Article  Google Scholar 

  27. S. Dabas, M. Kumar, P. Chaudhary, S. Shankar, S. Roy, and O. P. Thakur, Structural, energy storage analysis and enhanced magnetoelectric coupling in Mn modified multiferroic BiFeO3, J. Electron. Mater. 48(9), 5785 (2019)

    Article  ADS  Google Scholar 

  28. Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, and C. Fu, Effect of magnetic phase on structural and multiferroic properties of Ni1−xZnxFe2O4/BaTiO3 composite ceramics, J. Electron. Mater. 48(8), 4806 (2019)

    Article  ADS  Google Scholar 

  29. R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1 − x)Co0.8Cu0.2Fe2O4xBa0.6Sr0.4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)

    Article  ADS  Google Scholar 

  30. P. R. Das, B. Pati, B. C. Sutar, and R. N. P. Choudhury, Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics: Li2Pb2Y2W2Ti4V4O30, J. Mod. Phys. 3, 870 (2012)

    Article  Google Scholar 

  31. M. Shariq, D. Kaur, V. S. Chandel, P. K. Jain, S. Florence, M. Sharma, and S. Hussain, Study of structural, magnetic and optical properties of BiFeO3-PbTiO3 multiferroic composites, Arab. J. Sci. Eng. 44(1), 613 (2019)

    Article  Google Scholar 

  32. Y. Shia, Y. Pu, Q. Zhang, J. Li, and L. Guo, Dielectric and multiferroic properties of two-layered SrBi2Nb2−xFexO9 aurivillius compounds, Ceram. Int. 44(S1), S61 (2018)

    Article  Google Scholar 

  33. Kumar, K. L. Yadav, J. Shah, and R. K. Kotnala, Investigation of magnetoelectric effect in lead free K0.5Na0.5NbO3-BaFe12O19 novel composite system, J. Adv. Ceram 8(3), 333 (2019)

    Article  Google Scholar 

  34. P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics, Cent. Eur. J. Phys. 6(4), 843 (2008)

    Google Scholar 

  35. S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies of lead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)

    Google Scholar 

  36. P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)

    Google Scholar 

  37. S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6(3), 450 (2008)

    Google Scholar 

  38. B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics, Cent. Eur. J. Phys. 6(2), 289 (2008)

    Google Scholar 

  39. X.-Z. Deng, J. Zhang, and S.-T. Zhang, Simultaneously enhanced ferroelectric and magnetic properties in 0.675BiFe1−xCrxO3-0.325PbTiO3 (x = 0–0.05) ceramics, J. Mater. Sci. Mater. Electron. 28(3), 2435 (2017)

    Article  MathSciNet  Google Scholar 

  40. A. Kumar and D. Varshney, Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method, Ceram. Int. 38(5), 3935 (2012)

    Article  Google Scholar 

  41. W. Liu, S. Tsukada, and Y. Akishige, Preparation and ferroelectric properties of MnO2 doped BaTi2O5 ceramics by spark plasma sintering from the solid-state-calcined powder, J. Mater. Sci. Mater. Electron. 25(3), 1280 (2014)

    Article  Google Scholar 

  42. M. Muneeswaran and N. V. Giridharan, Effect of Dysubstitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles, J. Appl. Phys. 115(21), 214109 (2014)

    Article  ADS  Google Scholar 

  43. W. Mao, X. Wang, Y. Han, X. Li, Y. Li, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, and W. Huang, Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 554, 520 (2014)

    Article  Google Scholar 

  44. M. P. Rao, S. Musthafa, J. J. Wu, and S. Anandan, Facile synthesis of perovskite LaFeO3 ferroelectric nanostructures for heavy metal ion removal applications, Mater. Res. Phys 232, 200 (2019)

    Google Scholar 

  45. O. M. Hemeda, B. I. Salem, H. Abdelfatah, G. Abdelsatar, and M. Shihab, Dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by ceramic method, Physica B 574, 411680 (2019)

    Article  Google Scholar 

  46. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, and W. Cai, A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics, Mater. Res. Phys. 232, 428 (2019)

    Google Scholar 

  47. H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)

    Article  Google Scholar 

  48. T.-H. Wang, C.-S. Tu, Y. Ding, T.-C. Lin, C.-S. Ku, W.-C. Yang, H.-H. Yu, K.-T. Wu, Y.-D. Yao, and H.-Y. Lee, Phase transition and ferroelectric properties of xBiFeO3-(1 − x)BaTiO3 ceramics, Curr. Appl. Phys. 11(3), s240 (2011)

    Article  Google Scholar 

  49. T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, and X. Wei, Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage, Mater. Lett. 137, 79 (2014)

    Article  Google Scholar 

  50. Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, and T. R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J. Appl. Phys. 103(7), 07E507 (2008)

    Article  Google Scholar 

  51. R. Rai, S. K. Mishra, N. K. Singh, S. Sharma, and A. L. Kholkin, Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R = La and Er ceramics, Curr. Appl. Phys. 11(3), 508 (2011)

    Article  ADS  Google Scholar 

  52. E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T. P. Comyn, and A. J. Bell, Synthesis of nanostructured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties, Mater. Chem. Phys. 162, 106 (2015)

    Article  Google Scholar 

  53. N. B. Delfard, H. Maleki, A. M. Badizi, and M. Taraz, Enhanced structural, optical, and multiferroic properties of rod-like bismuth iron oxide nanoceramics by dopant lanthanum, J. Supercond. Nov. Magn. 33(4), 1207 (2020)

    Article  Google Scholar 

  54. P. Choudhary, P. Saxena, A. Yadav, A. K. Sinha, V. N. Rai, M. D. Varshney, and A. Mishra, Weak ferroelectricity and leakage current behavior of multiferroic CoCr2O4 nanomaterials, J. Supercond. Nov. Magn. 32(8), 2639 (2019)

    Article  Google Scholar 

  55. S. Matteppanavar, J. Angadi, T. Nagaraja, S. Rayaprol, and B. Angadi, Room temperature neutron diffraction, electron paramagnetic resonance and ferroelectric properties of relax or ferroelectric Pb(Fe0.6Nb0.2W0.2)O3, AIP Conf. Proc. 2142, 090009 (2019)

    Article  Google Scholar 

  56. M. Khan, A. Mishra, J. Shukla, and P. Sharma, Structural, optical and electrical properties of BaTiO3-NiFe2O4 based multifunctional composites, AIP Conf. Proc. 2142, 160012 (2019)

    Article  Google Scholar 

  57. F. Ma and Hongjian Zhao, Optical, magnetic, ferroelectric properties and photocatalytic activity of Bi2Fe4O9 nanoparticles through a hydrothermal assisted sol-gel method, Russ. J. Phys. Chem. 93(10), 2079 (2019)

    Article  Google Scholar 

  58. Q.-H. Jiang, C.-W. Nan, and Z.-J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 89(7), 2123 (2006)

    Google Scholar 

  59. A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)

    Article  Google Scholar 

  60. P. Sharma and D. Varshney, Effect of La and Pb substitution on structural and electrical properties of parent and La/Pb co-doped BiFeO3 multiferroic, Adv. Mater. Lett. 5(2), 71 (2014)

    Article  Google Scholar 

  61. M. Hasan, M. A. Hakim, M. A. Basith, M. S. Hossain, B. Ahmmad, M. A. Zubair, A. Hussain, and M. F. Islam, Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3, AIP Adv. 6(3), 035314 (2016)

    Article  ADS  Google Scholar 

  62. K. Naveen, N. Kumar, T. K. Mandal, P. D. Babu, V. Siruguri, P. K. Maji, and A. K. Paul, Multiferroic behaviour in B-site Cr-doped hexagonal YInO3 perovskites: Synthesis, structure and properties, J. Mol. Struct. 1185, 432 (2019)

    Article  ADS  Google Scholar 

  63. V. M. Gaikwad, and S. A. Acharya, Perovskitespinel composite approach to modify room temperature structural, magnetic and dielectric behavior of BiFeO3, J. Alloys Compd. 695, 3689 (2017)

    Article  Google Scholar 

  64. B. Dhanalakshmi, P. Kollu, B. C. Sekhar, B. P. Rao, and P. S. V. S. Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics, Ceram. Int. 43(12), 9272 (2017)

    Article  Google Scholar 

  65. A. Mitra, A. Shaw, and P. K. Chakrabarti, Microstructure, dielectric, ferroelectric and magnetoelectric coupling of a novel multiferroic of [(GdMnO3)0.7(CoFe2O4)0.3]0.5[TiO2] 0.5 nanocomposite, Mater. Chem. Phys. 240, 122242 (2020)

    Article  Google Scholar 

  66. H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)

    Article  Google Scholar 

  67. C. Chakrabarti, Q. Fu, X. Chen, Y. Qiu, S. Yuan, and C. Li, Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3-0.3Ba0.8Ca0.2TiO3 solid solutions, Ceram. Int. 46(1), 212 (2020)

    Article  Google Scholar 

  68. M. Shariq, S. Hussain, M. Rafique, M. Naveed-Ul-Haq, and A. Rehman, Enhanced multiferroic response in new binary solid solution 0.5Bi0.70A0.30FeO3-0.5PbTi0.5Fe0.5O3 (A= Sr, Pb, and Ba) systems, J. Magn. Magn. Mater. 492, 165685 (2019)

    Article  Google Scholar 

  69. R. Pandey, U. Shankar, S. S. Meena, and A. K. Singh, Stability of ferroelectric phases and magnetoelectric response in multiferroic (1 − x)Bi(Ni1/2Ti1/2)O3-PbTiO3/xNi0.6Zn0.4Fe2O4 particulate composites, Ceram. Int. 45(17), 23013 (2019)

    Article  Google Scholar 

  70. R. Sheikh, V. M. Gaikwad, and S. A. Acharya, Investigation of multiferroic behavior on flakes-like BiFeO3, J. Appl. Phys. Conf. Proc. 1731, 140030 (2016)

    Google Scholar 

  71. F. L. Wang, Y. Li, N. Wang, L. Zhu, A. Jain, Y. G. Wang, and F. G. Chen, Enhanced magnetic, ferroelectric and optical properties of Sr and Co co-doped BiFeO3 powders, J. Alloys Compd. 810, 151941 (2019)

    Article  Google Scholar 

  72. R. Gao, X. Qin, H. Wu, R. Xu, L. Liu, Z. Wang, C. Fu, W. Cai, G. Chen, and X. Deng, Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi0.86La0.08Sm0.14FeO3 ceramics, Mater. Res. Express 6, 106317 (2019)

    Article  ADS  Google Scholar 

  73. Arti, S. Kumar, P. Kumar, R. Walia, and V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application, Res. Phys. 14, 102403 (2019)

    Google Scholar 

  74. G. R. Gajula and L. R. Buddiga, Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate-lithium ferrite solid solutions, J. Magn. Magn. Mater. 494, 165822 (2020)

    Article  Google Scholar 

  75. L. Hou, L. Shi, J. Zhao, S. Zhou, S. Pan, X. Yuan, and Y. Xin, Room-temperature multiferroicity in CeFeO3 ceramics, J. Alloys Compd. 797, 363 (2019)

    Article  Google Scholar 

  76. Y. Wei, C. Bai, W. Zhu, C. Jin, D. Gao, G. Xu, Z. Jian, and Y. Zeng, Multiferroic orders in 0.5BiFeO3-0.5Bi0.5K0.5TiO3, Ceram. Int. 45, 15725 (2019)

    Article  Google Scholar 

  77. A. Puhan, A. K. Nayak, B. Bhushan, S. Praharaj, S. S. Meena, and D. Rout, Enhanced electrical, magnetic and optical behaviour of Cr doped Bi0.98Ho0.02FeO3 nanoparticles, J. Alloys Compd. 796, 229 (2019)

    Article  Google Scholar 

  78. S. K. Kundu, D. K. Rana, and S. Basu, Observation of room temperature multiferroic and electrical properties in gadolinium ferrite nanoparticles, Mod. Phys. Lett. B 33(21), 1950243 (2019)

    Article  ADS  Google Scholar 

  79. S. T. Dadami, S. Rayaprol, V. Sathe, and B. Angadi, Effect of electric poling on structural, magnetic and ferroelectric properties of 0.8PbFe0.5Nb0.5O3-0.2BiFeO3 multiferroic solid solution, Ceram. Int. 45(10), 13171 (2019)

    Article  Google Scholar 

  80. D. D. Mishra, D. M. Tewelde, M. Wang, and G. Tan, Multiferroic properties of PbFe12O19-PbTiO3 composite ceramics, J. Mater. Sci. Mater. Electron. 30(11), 10830 (2019)

    Article  Google Scholar 

  81. B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)

    Article  Google Scholar 

  82. S. Divya Lakshmi, and I. B. Shameem Banu, Tailoring the multiferroic properties of BiFeO3 by co-doping Er at Bi site with aliovalent Nb, Mn and Mo at Fe site, Appl. Ceram. Technol. 16(4), 1622 (2019)

    Article  Google Scholar 

  83. M. Kumar, D. M. Phase, and R. J. Choudhary, Structural, ferroelectric and dielectric properties of multiferroic YMnO3 synthesized via microwave assisted radiant hybrid sintering, Heliyon 5(5), e01691 (2019)

    Article  Google Scholar 

  84. S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion router, J. Asian Ceram. Soc. 2(4), 416 (2014)

    Article  Google Scholar 

  85. S. Thakur, K. Sharma, and N. S. Negi, Investigating various properties of lead free 65Na0.5Bi0.5TiO3-35CoFe2O4 multiferroic composite, AIP Conf. Proc. 2115, 030404 (2019)

    Article  Google Scholar 

  86. N. S. Negi, R. Kumar, H. Sharma, J. Shah, and R. K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of lead-free composites, J. Magn. Magn. Mater. 456, 292 (2017)

    Article  ADS  Google Scholar 

  87. A. Sharma, R. K. Kotnala, and N. S. Negi, Structural, dielectric, magnetic and ferroelectric properties of (Pb-TiO3)0.5-(Co0.5Zn0.5Fe2O4)0.5 composite, Physica B 415, 97 (2013)

    Article  ADS  Google Scholar 

  88. N. K. Verma, G. Kamde, D. Kumar, C. B. Singh, and A. K. Singh, Synthesis and dielectric characterization of BaZrNb2O8 high temperature piezoelectric ceramics, AIP Conf. Proc. 2115, 030378 (2019)

    Google Scholar 

  89. G. Dhir, P. Uniyal, and N. K. Verma, Effect of particle size on the multiferroic properties of Tb-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 29(10), 2621 (2016)

    Article  Google Scholar 

  90. C. Panda, P. Kumar, and M. Kar, Structural stability of BiFeO3 by chemical modification in Bi as well as Fe sites, AIP Conf. Proc. 1512, 1286 (2013)

    Article  ADS  Google Scholar 

  91. V. S. Puli, I. Coondoo, N. Panwar, A. Srinivas, and R. S. Katiyar, Room temperature structural, morphological, and enhanced ferroelectromagnetic properties of xBa0.7Ca0.3-(1 − x)BaFe0.2Ti0.3 multiferroic composites, J. Appl. Phys. 111, 102802 (2012)

    Article  ADS  Google Scholar 

  92. Y. Zhu, C. Quan, Y. Ma, Q. Wang, W. Mao, X. Wang, J. Zhang, Y. Min, J. Yang, X. Li, and W. Huang, Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles, Mater. Sci. Semicond. Process. 57, 178 (2017)

    Article  Google Scholar 

  93. Md. R. Islam, Md. S. Islam, M. A. Zubair, H. M. Usama, Md. S. Azam, and A. Sharif, Evidence of superparamagnetism and improved electrical propertiesin Ba and Ta co-doped BiFeO3 ceramics, J. Alloys Compd. 735, 2584 (2018)

    Article  Google Scholar 

  94. N. Kumar, A. Gaur, and G. D. Varma, Enhanced magnetization and magnetoelectric coupling in hydrogen treated hexagonal, J. Alloys Compd. 509, 1060 (2011)

    Article  Google Scholar 

  95. A. K. Sinha, B. Bhushan, Jagannath, R. K. Sharma, S. Sen, B. P. Mandal, S. S. Meena, P. Bhatt, C. L. Prajapat, A. Priyam, S. K. Mishra, and S. C. Gadkari, Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route, Res. Phys. 13, 102299 (2019)

    Google Scholar 

  96. Q. Q. Wang, Z. Wang, X. Q. Liu, and X. M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 95(2), 670 (2012)

    Article  Google Scholar 

  97. C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, Enhanced multiferroic and magnetocapacitive properties of (1 − x)Ba0.7Ca0.3TiO3xBiFeO3 ceramics, J. Am. Ceram. Soc. 97(3), 816 (2014)

    Article  Google Scholar 

  98. Q.-H. Jiang, A. Mei, Y.-H. Lin, C.-W. Nan, and Z. Shen, Ferroic properties of highly dense multiferroic Bi1−xLa0.05TbxFeO3 ceramics via sheltered spark plasma sintering, J. Am. Ceram. Soc. 91(7), 2189 (2008)

    Article  Google Scholar 

  99. Y. Qin, X. M. Chen, and X. Q. Liu, Dielectric, ferroelectric, and magnetic characteristics of LuFeCuO4 ceramics, J. Am. Ceram. Soc. 95(3), 977 (2012)

    Google Scholar 

  100. Y. Bai, X. L. Zhu, X. M. Chen, and X. Q. Liu, Dielectric and ferroelectric characteristics of Ba5NdFe1.5Nb8.5O30 tungsten bronze ceramics, J. Am. Ceram. Soc. 93(11), 3573 (2010)

    Article  Google Scholar 

  101. S. Dash, R. N. P. Choudhary, P. R. Das, and A. Kumar, Structural, dielectric and multiferroic properties of (Bi0.5K0.5)(Fe.5Nb0.5)O3, Can. J. Phys. 93(7), 738 (2015)

    Article  ADS  Google Scholar 

  102. V. Turchenko, V. G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, and S. Polosan, Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions, J. Alloys Compd. 821, 123412 (2020)

    Article  Google Scholar 

  103. G. Tan and X. Chen, Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics, J. Electron. Mater. 42(5), 906 (2013)

    Article  ADS  Google Scholar 

  104. V. G. Kostishyn, L. V. Panina, V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400, 327 (2016)

    Article  ADS  Google Scholar 

  105. Z. Manzoor, A. Khalid, G. M. Mustafa, S. M. Ramay, S. Naseem, and S. Atiq, Magnetoelectric coupling caused by strain mediation in hetero-structured spinel-perovskite multiferroic composites, J. Magn. Magn. Mater. 500, 166409 (2020)

    Article  Google Scholar 

  106. S. K. Upadhyay, V. R. Reddy, S. M. Gupta, N. Chauhan, and A. Gupta, Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering, AIP Adv. 5(4), 047135 (2015)

    Article  ADS  Google Scholar 

  107. T. P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G. R. Blake, and Zulhadjri, Structural and multiferroic properties in double-layer Aurivillius phase Pb0.4Bi2.1La0.5Nb1.7Mn0.3O9 prepared by molten salt method, J. Alloys Compd. 820, 153145 (2020)

    Article  Google Scholar 

  108. M. K. Das, M. A. Zubair, H. Tanaka, and A. K. M. A. Hossain, An experimental insight of the multiferroic properties of magne to electrically coupled xLNCZFO+(1 − x)BSTDO composites, J. Magn. Magn. Mater. 502, 166449 (2020)

    Article  Google Scholar 

  109. T. Acharya and R. N. P. Choudhary, Structural, electrical and magneto-electric properties of chemically synthesized Bi/PbTiO3-modified cobalt titanate, Physica B 582, 411970 (2020)

    Article  Google Scholar 

  110. P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of Bi2YZrVO9 ceramic, Mater. Res. Bull. 124, 110745 (2020)

    Article  Google Scholar 

  111. D. N. Bhoyar, S. B. Somvanshi, P. B. Kharat, A. A. Pandit, and K. M. Jadhav, Structural, infrared, magnetic and ferroelectric properties of Sr0.5Ba0.5Ti1−xFexO3 nanoceramics: Modifications via trivalent Fe ion doping, Physica B 581, 411944 (2020)

    Article  Google Scholar 

  112. S. Das, R. C. Sahoo, and T. K. Nath, Investigation of room temperature multiferroic properties in sol-gel derived gadolinium, cobalt doped BiFeO3 nanoceramics, J. Appl. Phys. 127(5), 054101 (2020)

    Article  ADS  Google Scholar 

  113. N. Pradhani, P. K. Mahapatra, R. N. P. Choudhary, and R. Giri, Structural, dielectric and electrical characteristics of manganese modified Bi0.5K0.5TiO3 ceramic, Physica B 580, 411719 (2020)

    Article  Google Scholar 

  114. A. D. Mani and I. Soibam, Influence of diamagnetic Zn on structural, ferroelectric and ferromagnetic properties of BiFe1−xZnxO3 (0% ≤ x ≤ 8%), Physica B 560, 97 (2019)

    Article  ADS  Google Scholar 

  115. A. Panda, R. Govindaraj, and G. Amarendra, Magneto dielectric coupling in Bi2Fe4O9, Physica B 570, 206 (2019)

    Article  ADS  Google Scholar 

  116. B. Shri Prakash and K. B. R. Varma, Effect of sintering conditions on the microstructural, dielectric, ferroelectric and varistor properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics belonging to the high and low dielectric constant members of ACu3M4O12 (A= alkali, alkaline-earth metal, rare-earth metal or vacancy, M=transition metal) family of oxides, Physica B 403(13–16), 2246 (2008)

    Article  ADS  Google Scholar 

  117. F. Mumtaz, G. H. Jaffari, Q. Hassan, and S. I. Shah, Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3, Physica B 538, 213 (2018)

    Article  ADS  Google Scholar 

  118. J. Fisher, S. H. Jang, M. S. Park, H. Sun, S. H. Moon, J. S. Lee, and A. Hussain, The effect of niobium doping on the electrical properties of 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 lead-free piezoelectric ceramics, Materials (Basel) 8(12), 8183 (2015)

    Article  ADS  Google Scholar 

  119. S. Hait, S. Ghose, and K. Mandal, Effect of Ba and Y co-doping on the structural and magneto-electric properties of BiFeO3 ceramic, J. Alloys Compd. 822, 153614 (2020)

    Article  Google Scholar 

  120. W.-M. Zhu, H.-Y. Guo, and Z.-G. Ye, Structure and properties of multiferroic (1 − x)BiFeO3xPbTiO3 single crystals, J. Mater. Res. 22(8), 2136 (2007)

    Article  ADS  Google Scholar 

  121. T. T. Carvalho, J. R. A. Fernandes, J. Perez de la Cruz, J. V. Vidal, N. A. Sobolev, F. Figueiras, S. Das, V. S. Amaral, A. Almeida, J. A. Moreira, and P. B. Tavares, Room temperature structure and multiferroic properties in Bi0.7La0.3FeO3 ceramics, J. Alloys Compd. 554, 97 (2013)

    Article  Google Scholar 

  122. Y. J. Wu, N. Wang, S. P. Gu, Y. Q. Lin, and X. M. Chen, Dielectric and magnetic properties of Ba5BiNiNb9O30 ceramics, Curr. Appl. Phys. 11(3), s247 (2011)

    Article  ADS  Google Scholar 

  123. A. R. Khan, G. M. Mustafa, S. K. Abbas, S. Atiq, M. Saleem, S. M. Ramay, and S. Naseem, Flexible ferroelectric and magnetic orders in BiFeO3/MnFe2O4 nanocomposites to steer wide range energy and data storage capability, Res. Phys. 16, 102956 (2020)

    Google Scholar 

  124. M. M. Rhaman, M. A. Matin, M. A. Hakim, and M. F. Islam, Dielectric, ferroelectric and ferromagnetic properties of samarium doped multiferroic bismuth ferrite, Mater. Res. Express 6(12), 125080 (2019)

    Article  ADS  Google Scholar 

  125. A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm-doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)

    Article  Google Scholar 

  126. M. Shariq, D. Kaur, V. S. Chandel, and M. A. Siddiqui, Electrical, surface morphology and magneto-capacitance properties of Pb free multiferroic (BiFeO3)1−x (BaTiO3)x solid solutions, Acta Phys. Pol. A 127(6), 1675 (2015)

    Article  ADS  Google Scholar 

  127. M. S. Wu, Z. B. Huang, C. X. Han, S. L. Yuan, C. L. Lu, and S. C. Xia, Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping, Solid State Commun. 152(24), 2142 (2012)

    Article  ADS  Google Scholar 

  128. Y. A. Chaudhari, C. M. Mahajan, E. M. Abuassaj, P. P. Jagtap, P. B. Patil, and S. T. Bendre, Ferroelectric and dielectric properties of nanocrystalline BiFeO3 multiferroic ceramics synthesized by solution combustion method (SCM), Mater. Sci. Pol. 31(2), 221 (2013)

    Article  ADS  Google Scholar 

  129. S. D. Lakshmi and I. B. S. Banu, Multiferroism and magnetoelectric coupling in single-phase Yb and X (X=Nb, Mn, Mo) co-doped BiFeO3 ceramics, J. Sol-Gel Sci. Technol. 89(3), 713 (2019)

    Article  Google Scholar 

  130. C. Chakrabarti, Q. Fu, X. Chen, C. Li, B. Meng, Y. Qiu, and S. Yuan, Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1−xErxFeO3-0.3Bi0.5Na0.5TiO3 solid solutions, J. Sol-Gel Sci. Technol. 93(3), 587 (2020)

    Article  Google Scholar 

  131. A. S. Priya, I. B. Shameem Banu, M. Shahid Anwar, and S. Hussain, Studies on the multiferroic properties of (Zr, Cu) co-doped BiFeO3 prepared by sol-gel method, J. Sol-Gel Sci. Technol. 80(3), 579 (2016)

    Article  Google Scholar 

  132. L. G. Wang, C. M. Zhu, L. Chen, C. L. Li, and S. L. Yuan, Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3-0.3Bi0.5Na0.5TiO3)−xCoFe2O4 ceramics, J. Sol-Gel Sci. Technol. 82(1), 184 (2017)

    Article  Google Scholar 

  133. P. Ganguly, Influence of ionic radius of rare-earths on the structural and electrical properties of Ba5RTi3NbrO30 (R=rare-earth) ferroelectric ceramics, J. Rare Earths 33(12), 1310 (2015)

    Article  Google Scholar 

  134. H. Dai, Z. Chen, T. Li, and Y. Li, Microstructure and properties of Sm-substituted BiFeO3 ceramics, J. Rare Earths 30(11), 1123 (2012)

    Article  Google Scholar 

  135. S. F. Mansour, N. I. Abu-Elsaad, and T. A. Elmosalami, Magnetoelectric and magnetic studies of the Bi1−xCaxFeO3 multiferrioc system, Can. J. Phys. 92(5), 389 (2014)

    Article  ADS  Google Scholar 

  136. D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature, Appl. Phys. Lett. 88(21), 212907 (2006)

    Article  ADS  Google Scholar 

  137. D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, and A. Banerjee, Multiferroic properties of polycrystalline Bi1−xCaxFeO3, Appl. Phys. Lett. 91(20), 202505 (2007)

    Article  ADS  Google Scholar 

  138. W. Luo, D. Wang, F. Wang, T. Liu, J. Cai, L. Zhang, and Y. Liu, Room-temperature simultaneously enhanced magnetization and electric polarization in BiFeO3 ceramic synthesized by magnetic annealing, Appl. Phys. Lett. 94(20), 202507 (2009)

    Article  ADS  Google Scholar 

  139. A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multi-ferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)

    Article  Google Scholar 

  140. D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, Structural, dielectric, ferroelectric and magnetic properties of (BNT-BT)-NCZF composites synthesized by a microwave assisted solid-state reaction route, J. Electron. Mater. 48(8), 5039 (2019)

    Article  ADS  Google Scholar 

  141. P. Bai, Y. Zeng, J. Han, Y. Wei, Y. Li, and M. Li, Effects of Bi2O3-B2O3-ZnO glass additive on structure, ferroelectric and dielectric properties of BiFeO3 ceramics, Ferroelectrics 555(1), 173 (2020)

    Article  Google Scholar 

  142. G. Gong, J. Zhou, Y. Duan, R. Chen, N. Sun, Y. Wang, and Y. Su, Co-existence of room temperature ferromagnetic and ferroelectric propertiesin Ba4SmFe0.5Nb9.5O30 ceramics, Ferroelectrics 555(1), 231 (2020)

    Article  Google Scholar 

  143. N. Sheoran, A. Kumar, V. Kumar, and A. Banerjee, Structural, optical, and multiferroic properties of yttrium Y3+-substituted BiFeO3 nanostructures, J. Supercond. Nov. Mater. 33(7), 2017 (2020)

    Article  Google Scholar 

  144. V. S. Puli, A. Kumar, N. Panwar, I. C. Panwar, and R. S. Katiyar, Transition metal modified bulk BiFeO3 with improved magnetization and linear magnetoelectric coupling, J. Alloys Compd. 509(32), 8223 (2011)

    Article  Google Scholar 

  145. P. Gupta, L. K. Meher, and R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of BiLa2TiVO9 ceramic, Appl. Phys. A Mater. Sci. Process. 126(3), 187 (2020)

    Article  ADS  Google Scholar 

  146. R. F. Zhang, C. Y. Deng, L. Ren, Z. Li, and J. P. Zhou, Ferroelectric, ferromagnetic, and magnetoelectric properties of multiferroic Ni0.5Zn0.5Fe2O4-BaTiO3 composite ceramics, J. Electron. Mater. 43(4), 1043 (2014)

    Article  ADS  Google Scholar 

  147. P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural, dielectric and electrical characteristics of lead-free ferroelectric ceramic: Bi2SmTiVO9, J. Electron. Mater. 47(9), 5458 (2018)

    Article  ADS  Google Scholar 

  148. P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of ferroelectric ceramics, J. Mater. Sci. Mater. Electron. 28(22), 17344 (2017)

    Article  Google Scholar 

  149. M. Dhilip, K. Saravana Kumar, R. Ramesh Kumar, and V. Anbarasu, Intrinsic magnetic and ferroelectric behaviour of non-magnetic Al3+ ion substituted dysprosium iron garnet compounds, J. Electron. Mater. 48(12), 8243 (2019)

    Article  ADS  Google Scholar 

  150. R. Rameshkumar, T. Ramachanadran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 8243 (2019)

    Article  Google Scholar 

  151. G. Qian, C. Zhu, L. Wang, Z. Tian, C. Yin, C. Li, and S. Yuan, Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 ceramics, J. Electron. Mater. 46(11), 6717 (2017)

    Article  ADS  Google Scholar 

  152. L. Singh, S. S. Yadava, B. C. Sin, U. S. Rai, K. D. Mandal, and Y. Lee, Comparative dielectric and ferroelectric characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3-0.5CaCu3Ti4O12 electroceramics, J. Electron. Mater. 45(6), 2662 (2016)

    Article  ADS  Google Scholar 

  153. S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, Structural and multiferroic properties of La-modified BiFeO3 ceramics, J. Appl. Phys. 101(3), 034104 (2007)

    Article  ADS  Google Scholar 

  154. S. Thakur, K. Parmar, S. Sharma, and N. S. Negi, Structural, electric and ferroelectric properties of lead free 50Na0.5Bi0.5TiO3-50CoFe2O4 multiferroic particulate composite, Integr. Ferroelectr. 203, 37 (2019)

    Article  Google Scholar 

  155. M. Dewan and S. B. Majumder, Investigations on the multifunctionality of bismuth iron oxide, Trans. Indian Inst. Met. 72(8), 2072 (2019)

    Article  Google Scholar 

  156. X. Li, X. Wang, Y. Li, W. Mao, P. Li, T. Yang, and J. Yang, Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles, Mater. Lett. 90, 152 (2013)

    Article  Google Scholar 

  157. Y. J. Yoo, J. S. Hwang, Y. P. Lee, J. S. Park, J. Y. Rhee, J. H. Kang, K. W. Lee, B. W. Lee, and M. S. Seo, Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics, J. Magn. Magn. Mater. 374, 669 (2015)

    Article  ADS  Google Scholar 

  158. A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping, J. Alloys Compd. 598, 142 (2014)

    Article  Google Scholar 

  159. M. S. Bernardo, T. Jardiel, M. Peiteado, F. J. Mompean, M. Garcia-Hernandez, M. A. Garcia, M. Villegas, and A. C. Caballero, Intrinsic compositional inhomogeneities in Bulk Ti-doped BiFeO3: Microstructure development and multiferroic properties, Chem. Mater. 25(9), 1533 (2013)

    Article  Google Scholar 

  160. Y. K. Jun, S. B. Lee, M. Kim, S. H. Hong, J. W. Kim, and K. H. Kim, Dielectric and magnetic properties in Ta-substituted BiFeO3 ceramics, J. Mater. Res. 22(12), 3397 (2007)

    Article  ADS  Google Scholar 

  161. K. M. Batoo, J. P. Labis, R. Sharma, and M. Singh, Ferroelectric and magnetic properties of Nd-doped Bi4−xFeTi3O12 nanoparticles prepared through the egg-white method, Nanoscale Res. Lett. 7(1), 511 (2012)

    Article  ADS  Google Scholar 

  162. K. Singh, R. K. Kotnala, and M. Singh, Study of electric and magnetic properties of (Bi0.9Pb0.1) (Fe0.9Ti0.1)O3 nanomultiferroic system, Appl. Phys. Lett. 93(21), 212902 (2008)

    Article  ADS  Google Scholar 

  163. A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)

    Article  Google Scholar 

  164. D. Suastiyanti, S. Yatmani, and Y. N. Maulida, A chemical route to the synthesis of Bi1−xMgxFeO3 (x =0.1 and x =0.07) nanoparticle with enhanced electrical properties as multiferroic material, Int. J. Engn. Technol. Manag. Res. 5(6), 103 (2018)

    Article  Google Scholar 

  165. S. Matteppanavar, S. Rayaprol, K. Singh, V. R. Reddy, and B. Angadi, Evidence for magneto-electric and spin-lattice coupling in PbFe0.5Nb0.5O3 through structural and magneto-electric studies, J. Mater. Sci. 50(14), 4980 (2015)

    Article  ADS  Google Scholar 

  166. O. M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. El-Sayed, and Sh. Mohamed, Electric and magnetic properties of [(NCZF)1−x(Na(ac.ac))x] nanocomposite, Open J. Appl. Sci. (Faisalabad) 7(10), 559 (2017)

    Article  ADS  Google Scholar 

  167. H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)

    Article  Google Scholar 

  168. M. Atif, U. Younas, W. Khalid, Z. Ahmed, Z. Ali, and M. Nadeem, Impedance spectroscopy, ferroelectric and optical properties of cobalt doped Zn1−xCoxO nanoparticles, J. Mater. Sci. Mater. Electron. 31, 5253 (2020)

    Article  Google Scholar 

  169. S. K. Mohanty, D. P. Datta, B. Behera, H. S. Mohanty, B. Pati, and P. R. Das, Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3NaNbO3, J. Mater. Sci. Mater. Electron. 31(4), 3245 (2020)

    Article  Google Scholar 

  170. S. Manzoor, S. Husain, A. Somvanshi, and M. Fatema, Structural, thermal, dielectric and multiferroic investigations on LaFeO3 composite systems, J. Mater. Sci. Mater. Electron. 31(10), 7811 (2020)

    Article  Google Scholar 

  171. M. Y. Shami, M. S. Awan, and M. Anis-ur-Rehman, Phase pure synthesis of BiFeO3 nanopowders using diverse prekursor via co-precipitation method, J. Alloys Compd. 509, 10139 (2011)

    Article  Google Scholar 

  172. Y. A. Chaudhari, A. Singh, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in BiFe1−xZnxO3 (x =0.1–0.2) ceramics by solution combustion method (SCM), J. Alloys Compd. 518, 51 (2012)

    Article  Google Scholar 

  173. Md. R. Islam, R. H. Galib, A. Sharif, M. Hasan, Md. A. Zubair, and Md. F. Islam, Correlation of charge defects and morphology with magnetic andelectrical properties of Sr and Ta codoped BiFeO3, J. Alloys Compd. 688, 1186 (2016)

    Article  Google Scholar 

  174. S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, J. Asian Ceram. Soc. 2(4), 416 (2014)

    Article  Google Scholar 

  175. P. Saxena, M. A. Dar, P. Sharma, A. Kumar, and D. Varshney, Structural, dielectric and ferroelectric properties of La and Ni codoped BiFeO3, AIP Conf. Proc. 1728, 020307 (2016)

    Article  Google Scholar 

  176. L. S. P. D. Babu, and S. Srinath, Effect of La doping on dielectric and magnetic properties of room temperature multiferroic LuFeO3, AIP Conf. Proc. 1953, 120076 (2018)

    Article  Google Scholar 

  177. A. S. Mahapatra, K. Mukhopadhyay, K. Mukhuti, and P. K. Chakrabartipabitra, Modulated magnetoelectric property of BiFeO3 incorporated in Co0.50Fe0.50Fe2O4, AIP Conf. Proc. 1591, 445 (2014)

    Article  ADS  Google Scholar 

  178. N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan, and V. P. S. Awan, Structural, dielectric and magnetic properties of Pr substituted Bi1−xPrxFeO3 (0≤x ≤0.15) multiferroic compounds, J. Alloys Compd. 510(2), L29 (2010)

    Article  Google Scholar 

  179. M. Ahmadzadeh, A. Ataie, and E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3, J. Alloys Compd. 622, 548 (2015)

    Article  Google Scholar 

  180. Sarkar, S. Mukherjee, and S. Mukherjee, Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route, Process. Appl. Ceram 9(1), 53 (2015)

    Article  Google Scholar 

  181. Z. Branković, D. Luković Golić, A. Radojković, J. Ćirković, D. Pajić, Z. Marinković Stanojević, J. Xing, M. Radović, G. Li, and G. Branković, Spark plasma sintering of hydrothermally synthesized bismuth ferrite, Process. Appl. Ceram 10(4), 257 (2016)

    Article  Google Scholar 

  182. Z. Li, Z. Wang, R. Gao, W. Cai, G. Chen, X. Deng, and C. Fu, Dielectric, ferroelectric and magnetic properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics prepared at different sintering conditions, Process. Appl. Ceram. 12(4), 394 (2018)

    Article  Google Scholar 

  183. M. Počcučca-Nešić, Z. Marinković Stanojević, P. Cotič Smole, A. Dapčević, N. Tasić, G. Branković, and Z. Branković, Processing and properties of pure antiferromagnetic h-YMnO3, Process. Appl. Ceram. 13(4), 427 (2019)

    Article  Google Scholar 

  184. X. Qin, R. Xu, H. Wu, R. Gao, Z. Wang, G. Chen, C. Fu, X. Deng, and W. Ca, A comparative study on the dielectric and multiferroic properties of Co0.5Zn0.5Fe2O4/0.8Sr0.2TiO3 composite ceramics, Process. Appl. Ceram. 13(4), 349 (2019)

    Article  Google Scholar 

  185. M. A. Matin, M. M. Haman, M. N. Hossain, F. A. Mozahid, M. A. Hakim, M. H. Rizvi, and M. F. Islam, Effect of preparation routes on the crystal purity and properties of BiFeO3 nanoparticles, Trans. Electr. Electron. Mater. 20(6), 485 (2019)

    Article  Google Scholar 

  186. X. Luo, H. Wang, R. Gao, X. Li, J. Zhang, and H. Ban, Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4-BaTiO3 composite ceramics, Process. Appl. Ceram 14(2), 91 (2020)

    Article  Google Scholar 

  187. M. M. Rhaman, M. A. Matin, M. N. Hossain, M. N. I. Khan, M. A. Hakim, and M. F. Islam, Ferromagnetic, electric, and ferroelectric properties of samarium and cobalt co-doped bismuth ferrite nanoparticles, J. Phys. Chem. Solids 147, 109607 (2020)

    Article  Google Scholar 

  188. A. Sagdeo, P. Mondal, A. Upadhyay, A. K. Sinha, A. K. Srivastava, S. M. Gupta, P. Chowdhury, T. Ganguli, and S. K. Deb, Correlation of microstructural and physical properties in bulk BiFeO3 prepared by rapid liquid-phase sintering, Solid State Sci. 18, 1 (2013)

    Article  ADS  Google Scholar 

  189. K. Verma, M. K. Shamim, S. Kumar, and S. Sharma, Role of ferrite phase on the structural, ferroelectric and magnetic properties of (1 − x) BCT-xCZFO composites, Mater. Chem. Phys. 255, 123284 (2020)

    Article  Google Scholar 

  190. F. Sehar, S. Anjum, Z. Mustafa, and S. Atiq, Coexistence of ferroelectric and ferromagnetic properties of Bi+3 substituted M-type barium hexaferrites, J. Supercond. Nov. Mater 33(7), 2073 (2020)

    Article  Google Scholar 

  191. S. Taran, B. Biswas, and H. D. Yang, Structural, magnetic, and ferroelectric properties of Zr-doped Y1−xZrxCrO3 bulk polycrystalline system, J. Supercond. Nov. Mater 33(8), 2483 (2020)

    Article  Google Scholar 

  192. K. Parida and N. P. Choudhary, Structural, electrical, and magnetic characteristics of chemically synthesized lead-free double perovskite: BiMgFeCeO6, J. Supercond. Nov. Mater 33, 3493 (2020)

    Article  Google Scholar 

  193. K. S. Samantaray, R. Amin, E. G. Rini, and S. Sen, Fe-doped Na0.47Bi0.47Ba0.06Ti0.98−xV0.02FexO3: Structure correlated vibrational, optical and electrical properties, J. Alloys Compd. 849, 156503 (2020)

    Article  Google Scholar 

  194. M. Sufyan, Z. Lu, Z. Chen, X. Wang, and S. K. Abbas, Multiferroic characterization of 3-phase (1 − x) (0.7BiFeO3-0.3CoFe2O4)-xPb(Zr, Ti)O3 composites withmagnetically driven polarization, J. Alloys Compd. 849, 156681 (2020)

    Article  Google Scholar 

  195. S. Satapathy, G. Prudhvi, A. A. Khan, P. Deshmukh, A. Ahlawat, K. R. S. P. Meher, and A. K. Karnal, MgFe2O4/(Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead free ceramic composite: A study onmultiferroic and magnetoelectric coupling properties at room temperature, J. Alloys Compd. 853, 156960 (2021)

    Article  Google Scholar 

  196. S. Sharma, J. M. Siqueiros, and O. R. Herrera, Structural, dielectric, ferroelectric and optical properties of Er doped BiFeO3 nanoparticles, J. Alloys Compd. 853, 156979 (2021)

    Article  Google Scholar 

References for Part III

  1. M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high temperature, CrystEngComm 21(14), 2355 (2019)

    Article  Google Scholar 

  2. L. Yu, X.-H. Hua, X.-J. Jiang, L. Qin, X.-Z. Yan, L.-H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal-organic frameworks, CrystEngComm 15, 687 (2015)

    Google Scholar 

  3. Y. Wang, Y. Qi, V. A. Blatov, J. Zheng, Q. Li, and C. Zhang, Two new zinc(II) coordination complexes with helix characteristics showing both interpretation and self-catenation features: A platform for the synthesis of chiral and catenated structures assembled by lenghmodulated dicarboxylates, Dalton Trans. 43, 15151 (2014)

    Article  Google Scholar 

  4. J. Hu, L. Huang, X. Yao, L. Qin, Y. Li, Z. Guo, H. Zheng, and Z. Xue, Six new metal-organic frameworks based on polycarboxylate acids and V-shaped imidazole-based synthon: Synthesis, crystal structures, and properties, Inorg. Chem. 50(6), 2404 (2011)

    Article  Google Scholar 

  5. H. Zhou, G.-X. Liu, X.-F. Wang, and Y. Wang, Three cobalt(II) coordination polymers based on V-shaped aromatic polycarboxylates and rigid bis(imidazole) ligand: Synthesis, crystal structures, physical properties and theoretical studies, CrystEngComm 15, 1377 (2013)

    Article  Google Scholar 

  6. H. Zhao, Q. Ye, Z.-R. Qu, D.-W. Fu, R.-G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity on a metal-organic frameworks, Chemistry 14(4), 1164 (2014)

    Article  Google Scholar 

  7. M. D. Zhang, Y. L. Li, Z. Z. Shi, H. G. Zheng, and J. Ma, A pair of 3D enantiotopic zinc(II) complexes based on two asymmetric achiral ligands, Dalton Trans. 46(43), 14779 (2017)

    Article  Google Scholar 

  8. J. K. H. Hui, H. Kishida, K. Ishiba, K. Takemasu, M. Morikawa, and N. Kimizuka, Ferroelectric coordination polymers self-assembled from mesogenic Zinc(II) porphyrin and dipolar bridging ligands, Chemistry 22(40), 14213 (2016)

    Article  Google Scholar 

  9. X.-Q. Yao, J.-S. Hu, M.-D. Zhang, L. Qin, Y.-Z. Li, Z.-J. Guo, and H.-G. Zheng, Chiral and noncentrosymmetric metal-organic frameworks featuring a 2D→3D parallel/parallel inclined subpolycatenation, Cryst. Eng. Comm. 13, 3381 (2013)

    Google Scholar 

  10. Q. Huang, J. Yu, J. Gao, X. Rao, X. Yang, Y. Cui, C. Wu, Z. Zhang, S. Xiang, B. Chen, and G. Qian, Two chiral nonlinear optical coordination networks based on interwoven two-dimensional square grids of double helices, Cryst. Growth Des. 10(10), 5291 (2010)

    Article  Google Scholar 

  11. R. Kumari, R. Seera, A. De, R. Ranjan, and T. N. G. Row, Organic multi-functional materials: Second harmonic, ferroelectric and dielectric properties in N-benzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 (2019)

    Article  Google Scholar 

  12. G. X. Wang, Z. Xing, L. Z. Chen, and G. F. Han, A ferroelectric olefin-copper(I) organometallic polymer with flexible organic ligand(R)-MbVBP, J. Mol. Struct. 1091, 16 (2015)

    Article  ADS  Google Scholar 

  13. M. Yu, F. Xuan, J. Lia, and G.-X. Liu, Four Zinc(II) coordination polymers with dicarboxylate and Tri(4-pyridylphenyl)amine ligand: Syntheses, crystal structures and physical properties, J. Mol. Struct. 1199(5), 127005 (2020)

    Article  Google Scholar 

  14. D. Feng, Y. Che, and J. Zheng, An acentric lanthanide-formate complex: Synthesis, structure, ferroelectric and magnetic properties, J. Rare Earths 30(8), 798 (2012)

    Article  Google Scholar 

  15. D.-W. Fu, H.-Y. Ye, Q. Ye, K.-J. Pan, and R.-G. Xiong, Ferroelectric metal-organic coordination polymer with a high dielectric constant, Dalton Trans. 7, 874 (2008)

    Article  Google Scholar 

  16. Kumari, R. Seera, A. De, R. Ranjan, and T. N. Guru Row, Organic multifunctional materials: Second harmonic, ferroelectric, and dielectric properties in N benzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 (2019)

    Article  Google Scholar 

  17. X. Xu, M. Liu, and Z. Liu, Crystal structures and ferroelectric properties of homochiral metal organic frameworks constructed from a single chiral ligand, Dalton Trans. 49(30), 10402 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Tylczyński.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1050-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tylczyński, Z. Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”. Front. Phys. 16, 53001 (2021). https://doi.org/10.1007/s11467-021-1050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1050-4

Keywords

Navigation