Skip to main content
Log in

Optimal Control for the Navier–Stokes Equation with Time Delay in the Convection: Analysis and Finite Element Approximations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

A distributed optimal control problem for the 2D incompressible Navier–Stokes equation with delay in the convection term is studied. The delay corresponds to the non-instantaneous effect of the motion of a fluid parcel on the mass transfer, and can be realized as a regularization or stabilization to the Navier–Stokes equation. The existence of optimal controls is established, and the corresponding first-order necessary optimality system is determined. A semi-implicit discontinuous Galerkin scheme with respect to time and conforming finite elements for space is considered. Error analysis for this numerical scheme is discussed and optimal convergence rates are proved. The fully discrete problem is solved by the Barzilai-Borwein gradient method. Numerical examples for the velocity-tracking and vorticity minimization problems based on the Taylor-Hood elements are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990). https://doi.org/10.1007/BF00271794

    Article  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equation. Calcolo 21, 337–344 (1984). https://doi.org/10.1007/BF02576171

    Article  MathSciNet  MATH  Google Scholar 

  4. Azmi, B., Kunisch, K.: Analysis and performance of the Barzilai–Borwein step-size rules for optimization problems in Hilbert spaces. J. Optim. Theory Appl. 185, 819–844 (2020)

    Article  MathSciNet  Google Scholar 

  5. Banks, H.T., Burns, J.A.: Hereditary control problems: numerical methods based on averaging approximations. SIAM J. Control Optim. 16, 169–208 (1978). https://doi.org/10.1137/0316013

    Article  MathSciNet  MATH  Google Scholar 

  6. Barzilai, J., Borwein, J.: Two-point step size gradient method. IMA J. Numer. Anal. 8(1), 141–148 (1988). https://doi.org/10.1093/imanum/8.1.141

    Article  MathSciNet  MATH  Google Scholar 

  7. Bessaih, H., Garrido-Atienza, M.J., Schmalfuß, B.: On 3d Navier-Stokes equations: regularization and uniqueness by delays. Physica D Nonlinear Phenomena 376–377, 228–237 (2018). https://doi.org/10.1016/j.physd.2018.03.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

  9. Caraballo, T., Real, J.: Navier–Stokes equations with delays. Proc. R. Soc. Lond. A 457, 2441–2453 (2001). https://doi.org/10.1098/rspa.2001.0807

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Casas, E.: Optimality conditions for some control problems of turbulent flow, In: Gunzburger M.D. (eds) Flow Control. The IMA Volumes in Mathematics and its Applications, Vol 68. Springer, New York, NY, pp. 127–147 (1995). https://doi.org/10.1007/978-1-4612-2526-3_6

  11. Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50(5), 2281–2306 (2012). https://doi.org/10.1137/110829404

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier–Stokes equations. SIAM J. Control Optim. 46(3), 952–982 (2007). https://doi.org/10.1137/060649999

    Article  MathSciNet  MATH  Google Scholar 

  13. Chrysafinos, K.: Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via penalized formulation. ESAIM Control Optim. Calc. Var. 10(4), 574–592 (2004). https://doi.org/10.1051/cocv:2004021

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrysafinos, K.: Error estimates for the velocity tracking problem for Navier–Stokes flows based on the artificial compressibility formulation. Numer. Func. Anal. Opt. 26(7–8), 773–812 (2005). https://doi.org/10.1080/01630560500377311

    Article  MathSciNet  MATH  Google Scholar 

  15. Chrysafinos, K.: Error estimates for time-discretizations for the velocity tracking problem for the Navier–Stokes flows by penalty methods. Discrete Cont. Dyn. B 6(5), 1077–1096 (2006). https://doi.org/10.3934/dcdsb.2006.6.1077

    Article  MathSciNet  MATH  Google Scholar 

  16. Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79, 2135–2167 (2010). https://doi.org/10.1090/S0025-5718-10-02348-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, Vol. 4 of Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1978)

  18. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1988)

  19. Dai, Y.-H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box constrained quadratic programming. Numer. Math. 100, 21–47 (2005). https://doi.org/10.1007/s00211-004-0569-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter Systems, pp. 87–103. Birkhäuser, Basel (2003). https://doi.org/10.1007/978-3-0348-8001-5_6

    Chapter  MATH  Google Scholar 

  21. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numer. Math. 97, 297–320 (2004). https://doi.org/10.1007/s00211-003-0507-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunford, N., Schwartz, J.Y.: Linear Operators, vol. I. General Theory. Intersci. Publ, New York (1958)

    MATH  Google Scholar 

  23. Ern, A., Guermond, J..-L.: Theory and Practice of Finite Elements. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4355-5

    Book  MATH  Google Scholar 

  24. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Encyclopedia of Mathematics and its Applications (2001)

  25. Fursikov, A.V.: On some control problems and results related to the unique solution of mixed problems by the three-dimensional Navier–Stokes and Euler equations. Dokl. Akad. Nauk SSSR 252(5), 1066–1070 (1980)

    ADS  MathSciNet  Google Scholar 

  26. Fursikov, A.V.: Control problems and theorems concerning on the unique solvability of a mixed boundary value problem for the three-dimensional Navier-Stokes and Euler equations. Mat. USSR-Sb. 43(2), 251–273 (1982). https://doi.org/10.1070/sm1982v043n02abeh002447

    Article  MATH  Google Scholar 

  27. Fursikov, A.V.: Properties of solutions of certain extremum problems related to the Navier–Stokes and Euler equations. Mat. USSR-Sb. 46(3), 323–351 (1983). https://doi.org/10.1070/sm1983v046n03abeh002796

    Article  Google Scholar 

  28. Gao, X., Gao, H.: Existence and uniqueness of weak solutions to stochastic 3d Navier–Stokes equations with delays. Appl. Math. Lett. 95, 158–164 (2019). https://doi.org/10.1016/j.aml.2019.03.037

    Article  MathSciNet  MATH  Google Scholar 

  29. Guzzo, S.M., Planas, G.: On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete Contin. Dyn. Syst. Ser. B 16(1), 225–238 (2011). https://doi.org/10.3934/dcdsb.2011.16.225

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Raviart, P..-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-5

    Book  MATH  Google Scholar 

  31. Gunzburger, M.D., Maservisi, S.: The velocity tracking problem for Navier–Stokes flows with bounded distributed controls. SIAM J. Control Optim. 37(6), 1913–1945 (1999). https://doi.org/10.1137/S0363012998337400

    Article  MathSciNet  MATH  Google Scholar 

  32. Gunzburger, M.D., Maservisi, S.: Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37(5), 1481–1512 (2000). https://doi.org/10.1137/S0036142997329414

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Y.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41(4), 1263–1285 (2003). https://doi.org/10.1137/S0036142901385659

    Article  MathSciNet  MATH  Google Scholar 

  34. He, Y., Li, K.: Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations. Numer. Math. 79, 77–106 (1998). https://doi.org/10.1007/s002110050332

    Article  MathSciNet  MATH  Google Scholar 

  35. He, Y., Li, K.: Nonlinear Galerkin method and two-step method for the Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 12(3), 283–305 (1996)

    Article  MathSciNet  Google Scholar 

  36. He, Y., Sun, W.: Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007). https://doi.org/10.1137/050639910

    Article  MathSciNet  MATH  Google Scholar 

  37. Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part IV: error estimates for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990). https://doi.org/10.1137/0727022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (2001). https://doi.org/10.1137/S0363012999361810

    Article  MathSciNet  MATH  Google Scholar 

  39. Kellog, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Func. Anal. 21(4), 397–431 (1976). https://doi.org/10.1016/0022-1236(76)90035-5

    Article  MathSciNet  Google Scholar 

  40. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 170. Springer, New York (1971)

  41. Liu, W.: Asymptotic behavior of solutions of time-delayed Burgers’ equation. DCDS Ser. B 2(1), 47–56 (2002). https://doi.org/10.3934/dcdsb.2002.2.47

    Article  MathSciNet  MATH  Google Scholar 

  42. Marion, M., Temam, R.: Navier–Stokes Equations: Theory and Approximation, Handb. Numer. Anal. VI, North-Holland, Amsterdam, pp. 503–688 (1998). https://doi.org/10.1016/S1570-8659(98)80010-0

  43. Peralta, G., Kunisch, K.: Analysis and finite element discretization for optimal control of a linear fluid-structure interaction problem with delay. IMA J. Numer. Anal. 40(1), 140–206 (2020). https://doi.org/10.1093/imanum/dry070

    Article  MathSciNet  MATH  Google Scholar 

  44. Quarteroni, A., Valli, A.: Numerical Approximations of Partial Differential Equations. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85268-1

    Book  MATH  Google Scholar 

  45. Roubíc̆ek, T.: Nonlinear Partial Differential Equations with Applications, 2nd edition. Vol. 23 of Springer Series in Computational Mathematics, Birkhäuser, Basel (2013). https://doi.org/10.1007/978-3-0348-0513-1

  46. Simon, J.: Compact sets in \(L^p(0, T; B)\). Ann. Mat. Pur. Appl. 146, 65–96 (1986). https://doi.org/10.1007/BF01762360

    Article  MATH  Google Scholar 

  47. Stenberg, R.: Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comput. 42, 9–23 (1984). https://doi.org/10.1090/S0025-5718-1984-0725982-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ (1973)

    MATH  Google Scholar 

  49. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 2nd edn. North Holland, Amsterdam (1979)

    MATH  Google Scholar 

  50. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010)

  51. Varnhorn, W.: Time delay and finite differences for the non-stationary non-linear Navier–Stokes equations. Math. Methods Appl. Sci. 15(2), 89–108 (1992). https://doi.org/10.1002/mma.1670150204

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Varnhorn, W.: A fractional step method for regularized Navier-Stokes equations, In: J.G. Heywood, K. Masuda, R. Rautmann R. and V.A Solonnikov V.A. (eds) The Navier-Stokes Equations II: Theory and Numerical Methods, Lecture Notes in Mathematics, vol 1530, Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/BFb0090343

  53. Wachsmuth, D.: Optimal control of the unsteady Navier-Stokes equations. PhD Thesis, Technischen Universität Berlin (2006). https://depositonce.tu-berlin.de/bitstream/11303/1767/1/Dokument_27.pdf

  54. Zeidler, E.: Applied Functional Analysis and its Applications I: Fixed Point Theorems. Springer, New York (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the One U.P. Faculty Grant 2019-101374 for G.P. and by the Philippine Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) for J.S.S. The authors are grateful to the anonymous referees for the comments and suggestions that lead to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Peralta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Turek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the following, an extension of the Gronwall Lemma that is needed in the analysis of the state and linearized state equations is presented. The reader is reminded on the notation of various time intervals in (2.2).

Lemma 7.1

Suppose that \(a \ge 0\), \(\phi \in L^\infty (I_r)\cap L^1(I)\), \(\varphi \in L^1(J_r)\), \(\alpha ,\, \beta ,\, \psi \in L^1(I)\), and \(\gamma \in L^\infty (I)\) are nonnegative and for a.e. \(t \in I\) it holds that

$$\begin{aligned} \phi (t) + \int _0^t \varphi (s){{\,\mathrm{d\!}\,}}s \le a + \int _0^t \alpha (s)\phi (s) + \beta (s)\phi ^r(s) + \gamma (s)\varphi ^r(s) + \psi (s) {{\,\mathrm{d\!}\,}}s. \end{aligned}$$
(7.1)

Then \(\phi \in L^\infty (I)\) and there exists a continuous function \({\mathfrak {c}} > 0\) such that

$$\begin{aligned} \Vert \phi \Vert _{L^\infty (I)} + \Vert \varphi \Vert _{L^1(I)} \le {\mathfrak {c}}_{T, r, \alpha , \beta , \gamma }(a + \Vert \phi \Vert _{L^\infty (I_r)} + \Vert \varphi \Vert _{L^1(I_r)} + \Vert \psi \Vert _{L^1(I)}) \end{aligned}$$

where \({\mathfrak {c}}_{T, r, \alpha , \beta , \gamma } := {\mathfrak {c}}(T, r, \Vert \alpha \Vert _{L^1(I)}, \Vert \beta \Vert _{L^1(I)}, \Vert \gamma \Vert _{L^\infty (I)}).\)

Proof

Let N be the largest positive integer such that \((N-1)r < T \le Nr\), and set \(I_n := [0, nr]\) for \(n=1,\ldots , N\). For each n, we shall demonstrate by induction that

$$\begin{aligned} \Vert \phi \Vert _{L^\infty (I_n)} + \Vert \phi \Vert _{L^1(I_n)} \le {\mathfrak {c}}_{T, r, \alpha , \beta , \gamma }(a + \Vert \phi \Vert _{L^\infty (I_r)} + \Vert \varphi \Vert _{L^1(I_r)} + \Vert \psi \Vert _{L^1(I_n)}). \end{aligned}$$
(7.2)

Let us verify this for \(n = 1\). Using the assumption (7.1) restricted to \(t \in I_1\), we can apply the usual Gronwall Lemma so that

$$\begin{aligned} \Vert \phi \Vert _{L^\infty (I_1)} \le (a + \Vert \beta \Vert _{L^1(I)}\Vert \phi \Vert _{L^\infty (I_r)} + \Vert \gamma \Vert _{L^\infty (I)}\Vert \varphi \Vert _{L^1(I_r)} + \Vert \psi \Vert _{L^1(I_1)})e^{\Vert \alpha \Vert _{L^1(I)}}. \end{aligned}$$
(7.3)

On the other hand, (7.1) also yields the following estimate

$$\begin{aligned} \Vert \varphi \Vert _{L^1(I_1)} \le a&+ \Vert \alpha \Vert _{L^1(I)}\Vert \phi \Vert _{L^\infty (I_1)} + \Vert \beta \Vert _{L^1(I)}\Vert \phi \Vert _{L^\infty (I_r)} \nonumber \\&+ \Vert \gamma \Vert _{L^\infty (I)}\Vert \varphi \Vert _{L^1(I_r)} + \Vert \psi \Vert _{L^1(I_1)}. \end{aligned}$$
(7.4)

Substituting (7.3) in the second term of the right hand side in (7.4) and then adding the resulting inequality with (7.3) prove (7.2) for \(n = 1\).

Now, suppose that (7.2) holds for \(n = k\). For \(t \in I_{k+1}\), we obtain from (7.1) that

$$\begin{aligned} \phi (t)&+ \int _0^t \varphi (s){{\,\mathrm{d\!}\,}}s \le a + \Vert \beta \Vert _{L^1(I)}\max \{\Vert \phi \Vert _{L^\infty (I_k)}, \Vert \phi \Vert _{L^\infty (I_r)}\} \\&+ \Vert \gamma \Vert _{L^\infty (I)}(\Vert \varphi \Vert _{L^1(I_k)} + \Vert \varphi \Vert _{L^1(I_r)}) + \int _0^t \alpha (s)\phi (s) + \psi (s) {{\,\mathrm{d\!}\,}}s. \end{aligned}$$

Thus, applying the Gronwall Lemma once more, one has the estimate

$$\begin{aligned} \Vert \phi \Vert _{L^\infty (I_{k+1})} \le (a&+ \Vert \beta \Vert _{L^1(I)}\max \{\Vert \phi \Vert _{L^\infty (I_k)}, \Vert \phi \Vert _{L^\infty (I_r)}\} \\&+ \Vert \gamma \Vert _{L^\infty (I)}(\Vert \varphi \Vert _{L^1(I_k)} + \Vert \varphi \Vert _{L^1(I_r)}) + \Vert \psi \Vert _{L^1(I_{k+1})})e^{\Vert \alpha \Vert _{L^1(I)}} \end{aligned}$$

and as a consequence it follows that

$$\begin{aligned} \Vert \varphi \Vert _{L^1(I_{k+1})} \le a&+ \Vert \beta \Vert _{L^1(I)}\max \{\Vert \phi \Vert _{L^\infty (I_k)}, \Vert \phi \Vert _{L^\infty (I_r)}\} \\&+ \Vert \gamma \Vert _{L^\infty (I)}(\Vert \varphi \Vert _{L^1(I_k)} + \Vert \varphi \Vert _{L^1(I_r)}) + \Vert \alpha \Vert _{L^1(I)}\Vert \phi \Vert _{L^\infty (I_{k+1})} + \Vert \psi \Vert _{L^1(I_{k+1})}. \end{aligned}$$

The last two inequalities along with the induction hypothesis imply (7.2) for \(n = k+1\). This completes the proof of the induction step. \(\square \)

Next, we recall the following discrete version of the Gronwall Lemma, see [34] for instance. This is utilized in the error analysis of the fully-discrete optimal control problem.

Lemma 7.2

Let \(n \in {\mathbb {N}}\), \(a \ge 0\), \(\{a_k\}_{k=1}^n\), \(\{b_k\}_{k=1}^n\), and \(\{c_k\}_{k=1}^{n-1}\) be nonnegative sequences with

$$\begin{aligned} a_j + \sum _{k=1}^j b_k \le a + \sum _{k=1}^{j-1} c_k a_k \quad \text {for all } j=1, \ldots , n. \end{aligned}$$

Then it holds that

$$\begin{aligned} \max _{1 \le k \le l}a_k + \sum _{k=1}^l b_k \le a \exp \Bigl (\, \sum _{k=1}^{l-1} c_k\Bigl ) \quad \text {for all } l=1,\ldots ,n. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, G., Simon, J.S. Optimal Control for the Navier–Stokes Equation with Time Delay in the Convection: Analysis and Finite Element Approximations. J. Math. Fluid Mech. 23, 56 (2021). https://doi.org/10.1007/s00021-021-00577-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00577-z

Keywords

Mathematics Subject Classification

Navigation