Skip to main content

Advertisement

Log in

Environmentally Friendly Energy Harvesting Using Magnetocaloric Solid-State Nanoparticles as Magnetic Refrigerator

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A phenomenological model (PM) is applied to simulate the magnetocaloric (MC) effect of iron oxide nanoparticles (IONs). Based on modeling results, MC parameters of IONs are deduced as the consequences of simulation for magnetization vs. temperature under 1 T magnetic field. There is a remarkable value of full-width at half-maximum of 213 K, giving an important practice for functioning IONs in the magnetic refrigerator (MR). Since IONs can be functioned over a large temperature range as an effective material for MR, covering a substantial and important range of temperatures, including room temperature and cryogenic temperatures. It is concluded that IONs can function as an auspicious MC magnet for the MR; especially IONs have tiny eddy current and hysteresis loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2010)

    Google Scholar 

  2. A. Kitanovski, Adv. Energy. Mater. 10, 1903741 (2020)

    Google Scholar 

  3. W. Wang, X. Kan, X. Liu, Z. Cheng, C. Liu, M. Shezad, K.M.U. Rehman, Eur. Phys. J. Plus 135, 505 (2020)

    Google Scholar 

  4. I.P. Kokila, P.S. Kumar, M. Kanagaraj, A.K. Paidi, L. He, S. Madeswaran, H.A. Therese, Nanopart Res. 22, 233 (2020)

    Google Scholar 

  5. F. Issaoui, E. Dhahri, E.K. Hlil, J. Low Temp. Phys. 200, 1 (2020)

    ADS  Google Scholar 

  6. U.D. Remya, K. Arun, S. Swathi, A. Dzubinska, M. Reiffers, R. Nagalakshmi, Appl. Phys. A 126, 925 (2020)

    ADS  Google Scholar 

  7. H. Biswal, T.R. Senapati, A. Haque, J.R. Sahu, Ceram. Int. 46, 11828 (2020)

    Google Scholar 

  8. Y. Sun, X. Xu, Y. Zhang, J. Magn. Magn. Mater. 219, 183 (2000)

    ADS  Google Scholar 

  9. K. Kanwar, I. Coondoo, M. Anas, V.K. Malik, P. Kumar, S. Kumar et al., Ceram Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.245

    Article  Google Scholar 

  10. E. Zarai, F. Issaoui, A. Tozri, M. Husseinc, E. Dhahri, J. Supercond. Nov. Magn. 29, 869 (2016)

    Google Scholar 

  11. M.A. Hamad, Process Appl. Ceram. 9, 11 (2015)

    Google Scholar 

  12. A., El Boubekri, S. Tillaoui, M. Sajieddine, M. Sahlaoui, H. Lassri, E.K. Hlil, A. Razouk, J. Magn. Magn. Mater. 507, 166819 (2020)

    Google Scholar 

  13. M. Bourouina, A. Krichene, N.C. Boudjada, M. Khitouni, W. Boujelben, Ceram. Int. 43, 8139 (2017)

    Google Scholar 

  14. A.D. Souza, M. Daivajna, J. Supercond. Nov. Magn. 33, 1781 (2020)

    Google Scholar 

  15. A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloy. Compd. 638, 221 (2015)

    Google Scholar 

  16. R. Nag, B. Sarkar, S. Pal, E. Bose, Phys. Scr. 94, 095801 (2019)

    ADS  Google Scholar 

  17. A.M. Ewas, Ceram. Int. 43, 7660 (2017)

    Google Scholar 

  18. M.M. Prusty, J.A. Chelvane, R. Nirmala, Mater. Res. Express 7, 064001 (2020)

    ADS  Google Scholar 

  19. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao et al., J. Supercond. Nov. Magn. 31(7), 1971–1979 (2020)

    Google Scholar 

  20. R. Hamdi, M. Smari, A. Bajorek, L. Bessais, E. Dhahri, A. Samara et al., Phys. Scr. 95, 055807 (2020)

    ADS  Google Scholar 

  21. G. Singh, H.P. Bhasker, R.P. Yadav, S.K. Mandal, A. Kumar, B. Khan et al., Phys. Scr. 94, 125805 (2019)

    ADS  Google Scholar 

  22. A.S. Alshomrani, M. Ramzan, Phys. Scr. 95, 025702 (2019)

    ADS  Google Scholar 

  23. J. Barclay, K. Brooks, J. Cui, J. Holladay, K. Meinhardt, E. Polikarpov, E. Thomsen, Cryog. 100, 69–76 (2019)

    ADS  Google Scholar 

  24. H. Omote, S. Watanabe, K. Matsumoto, I. Gilmutdinov, A. Kiiamov, D. Tayurskii, Cryog. 101, 58 (2019)

    ADS  Google Scholar 

  25. J. He, J. Wu, B. Lu, C. Liu, Int J Refrig 117, 94–103 (2020)

    Google Scholar 

  26. G. Liu, G. Yan, J. Yu, Int. J. Refrig. 110, 106–120 (2020)

    Google Scholar 

  27. S. El Kossi, J. Dhahri, E.K. Hlil, RSC Adv. 6, 63497 (2016)

    ADS  Google Scholar 

  28. S. Hcini, M. Boudard, A. Dhahri, S. Zemni, M.L. Bouazizi, Mater. Res. Express 6, 066108 (2019)

    ADS  Google Scholar 

  29. A.H. El-Sayed, M.A. Hamad, Ph. Trans. 92, 517 (2019)

    Google Scholar 

  30. A. Dhahri, E. Dhahri, E.K. Hlil, Appl. Phys. A. 116, 2077 (2014)

    ADS  Google Scholar 

  31. R.D. McMichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, R.E. Watson, J. Magn. Magn. Mater. 111, 29 (1992)

    ADS  Google Scholar 

  32. V. Chaudhary, R.V. Ramanujan, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  33. S.F. Hasany, N.H. Abdurahman, A.R. Sunarti, R. Jose, Curr. Nanosci. 9, 561 (2013)

    Google Scholar 

  34. P. Bender, E. Wetterskog, D. Honecker, J. Fock, C. Frandsen, C. Moerland et al., Phys. Rev. B 98, 224420 (2018)

    ADS  Google Scholar 

  35. M.A. Hamad, Ph. Transit. 85, 106 (2012)

    Google Scholar 

  36. M.A. Hamad, J. Supercond. Nov. Magn. 28, 3111 (2015)

    Google Scholar 

  37. E.S. Pyanzina, A.V. Gudkova, J.G. Donaldson, S.S. Kantorovich, J. Magn. Magn. Mater. 431, 201 (2017)

    ADS  Google Scholar 

  38. A. Amirov et al., J. Supercond. Nov. Magn. 31, 3283 (2018)

    Google Scholar 

  39. R. Masrour et al., J. Magn. Magn. Mater. 401, 91–95 (2016)

    ADS  Google Scholar 

  40. M.A. Hamad, J Supercond Nov Magn 27, 263–2672 (2014)

    Google Scholar 

  41. M.A. Hamad, J. Supercond. Nov. Magn. 26, 449–453 (2013)

    Google Scholar 

  42. R. Masrour et al., Solid State. Commun. 268, 64–69 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, M.A., Alamri, H.R. & Harb, M.E. Environmentally Friendly Energy Harvesting Using Magnetocaloric Solid-State Nanoparticles as Magnetic Refrigerator. J Low Temp Phys 204, 57–63 (2021). https://doi.org/10.1007/s10909-021-02595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02595-7

Keywords

Navigation